夕食後に AI について話さないと、社会の一員ではないような気がします。しかし、ネットワーク インテリジェンスを本当に理解していますか? 企業のネットワークは自動化段階ですか、それともインテリジェント段階ですか? 以下は、ネットワーク インテリジェンスに関する誤解です。
ツールインテリジェンスはネットワークインテリジェンスだと思う インテリジェントなツールを使用してネットワークを管理すれば、ネットワークがインテリジェントになると考える人もいます。しかし、通信ネットワークと人工知能技術の有機的な組み合わせにより、ネットワークはビジネスの意図をインテリジェントに捉え、戦略とネットワークの状態認識を実行し、ネットワークを自動的に展開して予測的に保守できるようになります。そのため、ビッグデータ、クラウドコンピューティング、高性能コンピューティングチップに依存し、モデル構築や機械学習などの人工知能技術を通じて、大量かつ豊富なネットワークデータを処理、学習、分析し、分析結果をネットワーク運用のあらゆる側面に迅速にフィードバックして、信頼できる意思決定の基盤を提供する必要があります。 しかし、現段階では、ほとんどの企業ネットワークにはまだそのような高度なインテリジェント システムがありません。一部の企業では、ネットワーク インテリジェンスはおろか、ネットワーク自動化さえ完全に実現されていません。一部の企業にとって、ネットワーク インテリジェンスとツール インテリジェンスを同一視することは盲目的な見方です。ネットワーク自動化管理ツールの使用により、制御の集中化とネットワーク利用率が大幅に向上しましたが、ネットワーク インテリジェンスの実現にはまだ長い道のりが残っています。 ネットワーク自動化で十分だと思う ネットワークの複雑さは飛躍的に増大しており、ネットワーク機器をインテリジェントに構成し、洗練された方法で管理する必要があります。しかし、一部の企業は、既存のネットワーク自動化で十分であり、ネットワークインテリジェンスにアップグレードする必要はないと考え始めています。 しかし、現実には、ビジネスの継続性はネットワークの可用性に依存するため、ネットワークの管理は困難です。調査によると、フォーチュン 500 企業の 59% が 1 週間あたり少なくとも 1.6 時間のダウンタイムを経験しています。明らかに、ネットワーク自動化だけに頼っていては、変化する状況に対処するのに十分ではありません。ネットワーク インテリジェンス ソリューションは、エンドツーエンドのネットワーク可視性を提供し、ネットワークの複雑さが増し、ニーズが変化するのに合わせてインテリジェントに拡張できます。 ネットワークをスマートにすることでコストを節約できると考えました。 企業の投資を削減するために、多くの企業は人的資源に代わるインテリジェントなソリューションを常に模索しており、ネットワーク システムも例外ではありません。では、ネットワークをインテリジェントにするとコストを節約できるのでしょうか? 必ずしもそうとは限りません。少なくとも初期投資は節約できません。動的ネットワーク インテリジェンスには、膨大なデータの収集、分析、処理システムを構築するために、ますます高度なネットワーク ハードウェア機器が必要であり、これらすべてを実現するために、企業があらゆる側面に投資し続ける必要があることを想像してみてください。 したがって、ネットワークをスマートにすることでコストを節約できると考えないでください。少なくともプロジェクトの初期段階では、コストを節約することは単なる希望的観測に過ぎません。 知性のための知性 もちろん、多くの企業にとって、インテリジェント ネットワークを構築したいのであれば、自分たちの能力の範囲内でそれを実現する必要があり、インテリジェンスのためにインテリジェンスを追求することは決してあってはなりません。そうしないと、限られた資金を長期的な調達と最適化に投資しなければならなくなり、キャッシュフローが逼迫するだけでなく、正常な事業展開や計画にも支障が生じ、損失を被ることになります。 ソフトウェアとハードウェアへの多額の支出に加えて、ネットワークの運用と保守の担当者の採用とトレーニングも不可欠です。なぜなら、ソリューションがいかに優れていても、最終的にはそれを実装、テスト、運用する人員が必要であり、これらのソフトコストは低くないことが多いからです。 結論 ネットワーク インテリジェンスは、ビジネス プロセス管理、インテント ベース ネットワーキング、自動化されたコンプライアンス監視、高度な分析をサポートし、複雑なマルチドメインおよびマルチベンダー環境に対応するために、企業にとって真の要件になりつつあります。ただし、誤解に陥らないようにするには、企業が自社の強みに基づいて選択を行う必要があることは明らかです。 |
<<: 「AI Beanプロジェクト」は、人工知能を活用して、故郷の貧しい女性たちに雇用機会を創出し、彼女たちが仕事と子育てを同時に行えるようにするプロジェクトです。
>>: この「水中トランスフォーマー」はNASAによって困難な水中作業のためにテストされている。
機械学習システムを分類する 1 つの方法は、一般化の程度によって分類することです。ほとんどの機械学習...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
近年最も注目されている新技術の一つとして、顔認識技術が広く利用されています。人々の生活は便利になった...
大型モデルの優れた能力は誰の目にも明らかであり、ロボットに統合されれば、ロボットはより賢い脳を持つこ...
機械学習の専門家は、ニューラル ネットワーク図の描き方について心配する必要がなくなりました。論文やブ...
電子技術の発達により、私たちはいつでもどこでも「視聴覚の饗宴」を楽しめるようになり、人間の聴覚と視覚...
大規模言語モデル (LLM) の推論には通常、かなり遅い推論プロセスである自己回帰サンプリングの使用...
[[339414]]英国のジェーンズ・ディフェンスのウェブサイトによると、米国防高等研究計画局のピ...
2030年までに、私たちの世界は変わるでしょう。人工知能 (AI) は、スマート シティ、モノのイ...
GenAI を商品輸送という主要機能にどのように適用できるかは最初は明確ではないかもしれませんが、...
今日のデータ主導の世界では、競争上の差別化を図ることが成功の鍵となります。この目標を達成するために、...
この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...
現代社会は科学技術が主導する社会です。様々な科学技術分野で新たな発見や研究開発成果が絶えず生み出され...