ネットワークインテリジェンスに関する誤解は4つある

ネットワークインテリジェンスに関する誤解は4つある

夕食後に AI について話さないと、社会の一員ではないような気がします。しかし、ネットワーク インテリジェンスを本当に理解していますか? 企業のネットワークは自動化段階ですか、それともインテリジェント段階ですか? 以下は、ネットワーク インテリジェンスに関する誤解です。

[[273695]]

ツールインテリジェンスはネットワークインテリジェンスだと思う

インテリジェントなツールを使用してネットワークを管理すれば、ネットワークがインテリジェントになると考える人もいます。しかし、通信ネットワークと人工知能技術の有機的な組み合わせにより、ネットワークはビジネスの意図をインテリジェントに捉え、戦略とネットワークの状態認識を実行し、ネットワークを自動的に展開して予測的に保守できるようになります。そのため、ビッグデータ、クラウドコンピューティング、高性能コンピューティングチップに依存し、モデル構築や機械学習などの人工知能技術を通じて、大量かつ豊富なネットワークデータを処理、学習、分析し、分析結果をネットワーク運用のあらゆる側面に迅速にフィードバックして、信頼できる意思決定の基盤を提供する必要があります。

しかし、現段階では、ほとんどの企業ネットワークにはまだそのような高度なインテリジェント システムがありません。一部の企業では、ネットワーク インテリジェンスはおろか、ネットワーク自動化さえ完全に実現されていません。一部の企業にとって、ネットワーク インテリジェンスとツール インテリジェンスを同一視することは盲目的な見方です。ネットワーク自動化管理ツールの使用により、制御の集中化とネットワーク利用率が大幅に向上しましたが、ネットワーク インテリジェンスの実現にはまだ長い道のりが残っています。

ネットワーク自動化で十分だと思う

ネットワークの複雑さは飛躍的に増大しており、ネットワーク機器をインテリジェントに構成し、洗練された方法で管理する必要があります。しかし、一部の企業は、既存のネットワーク自動化で十分であり、ネットワークインテリジェンスにアップグレードする必要はないと考え始めています。

しかし、現実には、ビジネスの継続性はネットワークの可用性に依存するため、ネットワークの管理は困難です。調査によると、フォーチュン 500 企業の 59% が 1 週間あたり少なくとも 1.6 時間のダウンタイムを経験しています。明らかに、ネットワーク自動化だけに頼っていては、変化する状況に対処するのに十分ではありません。ネットワーク インテリジェンス ソリューションは、エンドツーエンドのネットワーク可視性を提供し、ネットワークの複雑さが増し、ニーズが変化するのに合わせてインテリジェントに拡張できます。

ネットワークをスマートにすることでコストを節約できると考えました。

企業の投資を削減するために、多くの企業は人的資源に代わるインテリジェントなソリューションを常に模索しており、ネットワーク システムも例外ではありません。では、ネットワークをインテリジェントにするとコストを節約できるのでしょうか? 必ずしもそうとは限りません。少なくとも初期投資は節約できません。動的ネットワーク インテリジェンスには、膨大なデータの収集、分析、処理システムを構築するために、ますます高度なネットワーク ハードウェア機器が必要であり、これらすべてを実現するために、企業があらゆる側面に投資し続ける必要があることを想像してみてください。

したがって、ネットワークをスマートにすることでコストを節約できると考えないでください。少なくともプロジェクトの初期段階では、コストを節約することは単なる希望的観測に過ぎません。

知性のための知性

もちろん、多くの企業にとって、インテリジェント ネットワークを構築したいのであれば、自分たちの能力の範囲内でそれを実現する必要があり、インテリジェンスのためにインテリジェンスを追求することは決してあってはなりません。そうしないと、限られた資金を長期的な調達と最適化に投資しなければならなくなり、キャッシュフローが逼迫するだけでなく、正常な事業展開や計画にも支障が生じ、損失を被ることになります。

ソフトウェアとハ​​ードウェアへの多額の支出に加えて、ネットワークの運用と保守の担当者の採用とトレーニングも不可欠です。なぜなら、ソリューションがいかに優れていても、最終的にはそれを実装、テスト、運用する人員が必要であり、これらのソフトコストは低くないことが多いからです。

結論

ネットワーク インテリジェンスは、ビジネス プロセス管理、インテント ベース ネットワーキング、自動化されたコンプライアンス監視、高度な分析をサポートし、複雑なマルチドメインおよびマルチベンダー環境に対応するために、企業にとって真の要件になりつつあります。ただし、誤解に陥らないようにするには、企業が自社の強みに基づいて選択を行う必要があることは明らかです。

<<:  「AI Beanプロジェクト」は、人工知能を活用して、故郷の貧しい女性たちに雇用機会を創出し、彼女たちが仕事と子育てを同時に行えるようにするプロジェクトです。

>>:  この「水中トランスフォーマー」はNASAによって困難な水中作業のためにテストされている。

ブログ    
ブログ    
ブログ    

推薦する

AIサイバーセキュリティ攻撃を防ぐ7つの戦略

人工知能(AI)が高度化し普及するにつれて、サイバーセキュリティの脅威が増大します。ハッカーやサイバ...

...

日本の芥川賞受賞者が認める:小説の5%はChatGPTによって書かれた

1月22日、日本で最も権威のある文学賞である芥川賞を受賞した作家が、受賞作である小説「東京同情塔」の...

【ビッグネームが勢揃い、第1話】新小売時代のスマートミドルプラットフォーム

小売業界は急速に進化しています。フロントエンドの入り口とバックエンドのテクノロジーは、変革のたびに絶...

水注入、ピット占拠、ナンセンス:機械学習の学術界における「疑似科学」

[[236693]]ビッグデータダイジェスト制作翻訳者:張秋月、郝貴儿、倪倩、飛、ヴァージル、銭天...

人工知能に対して、人間がかけがえのない存在となるような利点は何でしょうか?

人工知能に関して言えば、かつて映画「マトリックス」で描かれたSFシーンが世界に衝撃を与え、トレンドを...

人工知能はすでに無敵なのでしょうか? AIに取って代わられない6つの仕事

人工知能は万能のように思えますが、実際には人工知能に代替できない職業も数多くあります。 HSBCは銀...

トリソララン人は救われた!ディープラーニングは三体問題を解決する

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

人工知能(AI)とスポーツスタジアムの融合

新型コロナウイルスCOVID-19の影響は今も続いており、世界中の多くのスポーツスタジアムが麻痺状態...

感染症予防・抑制において、サービスロボットは「必須」なのか?

人工知能の概念の普及に伴い、サービスロボット業界も近年ますます注目を集めています。資本市場のサービス...

音声認識技術の開発と応用の概要

[[280529]] [51CTO.com クイック翻訳] コミュニケーションは私たちの生活において...

単語ベクトル計算とテキスト分類ツール fastText の応用原理と実践

FastTextは、Facebookが2016年にオープンソース化した単語ベクトル計算およびテキスト...

ソフトウェアと自動化機器が持続可能性と回復力を向上させる方法

近年、需要の増加、エネルギーコストの高騰、持続可能性の問題が続く中、データセンターが注目を集めていま...

AIの次の目的地:洗練された生活シナリオのインテリジェント時代

[[348783]] Canvaからの画像テクノロジーは生活の中でどのような役割を果たしているのでし...