機械学習を実装するには?

機械学習を実装するには?

機械学習の実装は、AI を活用した製品やサービスの成功にとって重要なステップです。

MLOps が企業の問題を​​効率的に解決するのにどのように役立つかについて説明します。

現在「MLOps」として知られる機械学習の実装は、多くの業界で最新のトレンドとなっています。しかし、多くの企業はこのプロセスで困難に直面しています。業務とは、企業が毎日行うもので、工場、オフィス、店舗などを運営することです。しかし、「機械学習を実装する」とはどういう意味でしょうか? ここでは、ビジネスで MLO を活用する方法をいくつか紹介します。

ビジネス上の問題を定義する

まず、ビジネス上の問題を定義する必要があります。解決したい主な問題は何ですか? 売上の増加や顧客離れの削減などの具体的な目標、またはショッピング アプリへの画像認識の追加などの具体的なユース ケースが必要です。ビジネス上の問題が MLOps の使用を導きます。

適切なデータを収集する

次に、適切なデータを収集する必要があります。使用されるデータはモデルの品質に影響します。データが正しくない場合、モデルも正しくなくなります。使用されるデータが正確であり、目的のユースケースを反映していることを確認します。たとえば、チェックアウト率をモデル化する場合は、注文や商品情報など、チェックアウト率を反映するデータを使用する必要があります。顧客が購入するアイテムをモデル化する場合は、製品と注文の情報を使用する必要があります。顧客の感情をモデル化する場合は、レビュー データなど、顧客の感情に関連するデータを使用する必要があります。

信頼性と拡張性に優れたMLOPSプラットフォームの構築

さらに、信頼性が高くスケーラブルな MLOps プラットフォームを構築する必要があります。このようなプラットフォームを構築することは、機械学習プロジェクトを実装する上で非常に重要です。スケーラブルなプラットフォームでは、現在の処理能力よりも多くのデータを処理し、より多くのモデルを構築および拡張できます。これにより、MLOps の利用が可能になります。これは、管理されたクラウドベースの機械学習プラットフォームを使用することで実現できます。これらのプラットフォームは、データをクリーンアップ、整理、標準化し、手作業の多くを排除することで AI プロジェクトの構築と実装を容易にします。

適切な機械学習製品/サービスの構築を決定する

最後に、適切な ML 製品/サービスを構築するかどうかを決定する必要があります。これは、解決しようとしているビジネス上の問題に基づきます。たとえば、チェックアウト率を予測したい場合は、推奨エンジン ソリューションを使用するとよいでしょう。また、特定の商品の需要を予測したい場合は、予測ソリューションを使用するとよいでしょう。構築する適切な製品またはサービスを決定したら、ソリューションを実装する必要があります。これは、選択したホスト型のクラウドベースの機械学習プラットフォームを使用して実行できます。これにより、モデルの構築、トレーニング、展開が容易になり、時間と労力を節約できます。

ビジネスに MLOps を導入したら、それを活用して実際のビジネス上の問題を解決し、AI プロジェクトをより成功させ、持続可能にすることができます。

<<:  年末ですね!ファーウェイクラウド開発者デーと2023イノベーションサミットが成功裏に開催されました

>>:  ソフトウェア開発者の生産性を測定する価値はあるでしょうか?

ブログ    
ブログ    
ブログ    

推薦する

...

ドローン自動化システムの産業への応用を探る

世界中の企業は、競合他社に対して競争上の優位性を獲得するのに役立つ高度なテクノロジーを常に探していま...

GitHub、企業向けAI搭載コーディングアシスタント「Copilot Enterprise」をリリース

GitHub の新製品「GitHub Copilot Enterprise」は、企業独自のコードベー...

...

AI 開発の方向性に関する大論争: ハイブリッド AI?強化学習?実践的な知識と常識をAIに統合する?

[[396127]]著者: Ben Dickson はソフトウェア エンジニアであり、テクノロジー...

信用デフォルト予測モデリングでは、ランダムフォレストが 91.1% でトップに!

みなさんこんにちは、ピーターです〜この記事は、Kaggle での機械学習の実践的なケーススタディです...

絵画制作において想像力を最大限に発揮できる 8 つの優れた AI ペイント ツール

今日は、絵画作成において無限の想像力を発揮するのに役立つ 8 つの優れた AI ペイント ツールを紹...

AIが研究者に歴史の匂いを再現する手助けをする方法

欧州連合は、AIを使って歴史的な香りや嗅覚要素を再現することを計画している研究チームに280万ユーロ...

...

調査 | AIと機械自動化が社会に与える影響に関する世界の見解

[[358905]]この記事はLeiphone.comから転載したものです。転載する場合は、Leip...

1時間から3.5分まで、Metaの新しいアルゴリズムは携帯電話で3D顔データを収集できる

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

...

実践 | 人工知能が小売体験を向上させる 20 の例

小売体験は長年にわたってあまり変わっていません。つまり、店に入って、適切な製品を見つけて、それを購入...

BLIP-2とInstructBLIPがトップ3にランクイン! 12の主要モデル、16のリスト、「マルチモーダル大規模言語モデル」の総合評価

マルチモーダル大規模言語モデル (MLLM) は、LLM の豊富な知識蓄積と強力な推論および一般化機...