AIの4つのタイプについてお話しましょう

AIの4つのタイプについてお話しましょう

人工知能が流行するにつれ、人々はそれがどのように機能し、何ができるのかについて多くの疑問を抱いています。よく聞かれる質問は、「AI には 4 つの種類がある」ということです。編集者が以下で説明します。

AIの4つのタイプは何ですか?

反応型マシン

リアクティブマシンは AI で非常に人気のある概念です。これは、最も基本的かつ最も古いタイプの AI だからです。反応型マシンは、特定の刺激やシナリオにのみ反応するマシンです。その後に登場した多くの AI ソフトウェアとは異なり、過去の経験や大量の知識を活用して特定の状況を評価したり対応したりすることができませんでした。 GPS やデジタルマップを使用して周辺を移動したり、ルートを計画したりすることさえありません。代わりに、彼らは見たものに基づいて動きます。

反応型マシンは、二度と同じ行動をとらないため、チェスやカードゲームなどのゲームに優れています。フィルタリングやおすすめなどのシンプルな機能も非常に優れています。これらは単純なタスクには最適ですが、現実世界にはうまく適用できません。

これらのプログラムは想像力や抽象的思考に欠けており、簡単に騙されてしまうため、顔認識やロボットアシスタントなどの分野には使用できません。

そうは言っても、反応型機械は今日でも広く使用されています。反応型機械がなければ、自動運転車などの技術革新は不可能だからです。

限られたメモリ

限定メモリは、音声クローン効果を作成するために使用される 2 番目のタイプの AI システムです。簡単に言えば、このタイプの AI により、ロボットは情報や経験を「記憶」として保存できるようになります。そして、次に同様の状況に遭遇したときに、この新しい「記憶」を使用して、より正確な予測を行います。優れた過剰反応機構を備えているため、より複雑な機械学習システムで使用されます。

このタイプの AI は強化学習の原理に基づいて動作します。つまり、試行錯誤を経て ML システムを使用して、より適切な意思決定と予測を行うということです。さらに、進化的生成敵対ネットワークを使用します。これは、いくつかの進化を通じて情報を収集するソフトウェアの一種です。ネットワークのシステム更新により、いくつかの変更を適応および組み込むことが可能になりました。

心の理論

これはまだ十分に活用されていないタイプの AI ですが、多くの科学者は、これによって機械が作業の構造を理解できるようになると予測しています。この構造には、人々と彼らが相互作用する環境が含まれます。

長年にわたり、多くの科学者がこの人工知能とそれが人間にどのような影響を与えるかを理解しようと努めてきました。

Theory of Mind は、メタバースを使用して学習をガイドします。限られた記憶とは異なり、一連の試行錯誤を通じて学習する必要はなく、むしろ心の理論に基づく人工知能のために構築された中央ニューラル ネットワークを通じて学習します。このタイプの AI を使用すると、AI 音声ジェネレーターは、元の音声と区別が困難な模倣音声を作成できるようになります。

自己認識型人工知能

自己認識ロボットは、あらゆる技術革新者の夢です。心の理論 AI と同様に、自己認識 AI もほとんど未発見のままです。これは意識を作り出すことができる AI ロボットであり、ロボットが自身の内部状態を評価できるようになります。いわゆる自己認識製品を製造している発明家が数人いるという報告があるが、これらはすべて詐欺のようだ。

しかし、科学者たちはゆっくりと、この種の人工知能についてさらなる発見をしてきました。このタイプの AI により、ロボットはパターンを認識し、それを複製できるようになります。これは、AIが自身の内部状態を評価できるためです。

自己認識型 AI の利点は無限です。他の機械に接続しながらも独立して動作できる機械が実現します。同社は成功だけでなく失敗からも学ぶことができるため、革新能力は他に類を見ないものとなるでしょう。

しかし、この技術はまだ発展途上です。科学者たちは、人間の意識をモデルとして使用せずに、自己認識型人工知能を作成する方法をまだ見つけていません。

それでも、自己認識型 AI の可能性に興奮しないわけにはいきません。人工知能にはいくつかの潜在的な用途があります。これらのアプリケーションの一部はすでに使用されていますが、他のアプリケーションはまだ開発中です。

結論は

これで、AI の種類とその用途について理解が深まりました。しかし、音声クローンにはこれらのシステムが使用されていることをご存知でしたか?近い将来、この技術はさらに進歩するでしょう。いつか私たち全員が自分専用のロボットを持つ日が来るかもしれませんが、それまでは AI 音声クローンを使用して、非常にクールなオーディオ効果を作成できます。


<<:  マイクロソフト、感情分析技術の販売を中止し、顔認識ツールの使用を制限

>>:  シンボリック AI がビジネス運営にとって重要な理由は何ですか?

ブログ    
ブログ    
ブログ    

推薦する

再びH800を去勢しますか?米国商務省の新しい政策はGPU輸出に対する規制を強化し、今週発表される予定である。

ロイター通信は今週、米国が中国へのGPU輸出をさらに制限する新たな規制を導入すると独占的に報じた。制...

看護ロボットは医療従事者の仕事に完全に取って代わることができるのでしょうか?

研究によると、共感と前向きな指導は、医師が患者の痛みを和らげ、術後の回復を早め、精神科薬の使用を減ら...

汎用聴覚AIのロックを解除します!清華大学電子工学部とVolcano Voiceが共同で新しい認知指向の聴覚言語モデルをオープンソース化

最近、清華大学電子工学部と Volcano Voice チームが協力して、認知指向のオープンソース聴...

張北院士:生成型人工知能の3つの大きな機能と1つの大きな欠点

網易科技は1月16日、知普AI技術公開デーで中国科学院院士で清華大学教授の張北氏が「大規模言語モデル...

GNNの実装はもはや難しくありません。この記事では、効率的なGNNとスケーラブルなグラフ表現学習の最新の進歩についてまとめています。

グラフ ニューラル ネットワークは、現実世界に適用する場合、メモリ制限、ハードウェア制限、信頼性制限...

PaddleOCRのスーパーパワーを解き放つ

光学文字認識 (OCR) は、機械が画像やスキャンされた文書からテキストを認識して抽出できるようにす...

人工知能と拡張現実はオンラインショッピング行動に影響を与える

[[405357]]画像ソース: https://pixabay.com/images/id-468...

この記事ではDiffアルゴリズムの使い方を説明します

[[420540]] 1. 基本Diff アルゴリズムは、仮想 DOM の最小限の更新を実装します。...

AIは敵ではなく友達でしょうか?自殺防止技術が25人の命を救うことに成功

世界保健機関によれば、毎年80万人が自殺で亡くなっている。 この数字は年々高いままですが、人工知能と...

...

AIの進化:「テクノロジーは2つの道に分かれる」

この記事はWeChatの公開アカウント「Product Second Sister」から転載したもの...

人工知能がビジネスを徐々に変えていく

確かに、人工知能(AI)主導のテクノロジーが人間を不要にするか否かをめぐる議論は、少なくともこの聴衆...

テンセントクラウドのフルリンクAI開発者サービスシステムがAIと産業の融合を加速

12月15日、第1回テンセントクラウド+コミュニティ開発者会議で、テンセントクラウドの副社長である王...

2020年代に人工知能が教育を変える6つの方法

自動駐車システム、モバイル決済、ソーシャル メディア フィード、あるいは私たちが毎日触れる無数のテク...

ガートナーの予測: 2019 年の 7 つの主要な AI テクノロジーのトレンドが数百万の業界に混乱をもたらす!

SFではAIロボットは悪者として描かれるかもしれないが、一部のテクノロジー大手は現在、AIロボット...