アクセシブルな旅行はより安全です! ByteDanceの研究成果がCVPR2022 AVAコンペティションで優勝

アクセシブルな旅行はより安全です! ByteDanceの研究成果がCVPR2022 AVAコンペティションで優勝

最近、CVPR2022の各競技の結果が次々と発表されました。ByteDanceの知能創造AIプラットフォームの「Byte-IC-AutoML」チームは、独自に開発したParallel Pre-trained Transformers(PPT)フレームワークにより、合成データに基づくインスタンスセグメンテーションチャレンジ(Accessibility Vision and Autonomy Challenge、以下AVA)で優秀な成績を収め、競技の唯一のトラックで優勝しました。

論文アドレス: https://arxiv.org/abs/2206.10845

今年のAVAコンテストはボストン大学とカーネギーメロン大学が共同で主催します。

このコンテストでは、レンダリング エンジンを通じて合成インスタンス セグメンテーション データセットを取得します。このデータセットには、障害のある歩行者と対話する自律システムのデータ例が含まれています。このコンペの目標は、アクセシビリティ関連の人物とオブジェクトのオブジェクト検出とインスタンスセグメンテーションのベンチマークと方法を提供することです

データセットの視覚化


競争難易度分析

  1. ドメイン一般化問題: このコンペティションのデータ セットはすべてレンダリング エンジンによって合成された画像であり、データ ドメインと自然画像の間には大きな違いがあります。
  2. ロングテール/少数サンプルの問題: データにはロングテール分布があり、たとえば「松葉杖」や「車椅子」のカテゴリはデータセット内に少なく、セグメンテーション効果も悪くなります。
  3. セグメンテーションの堅牢性の問題: 一部のカテゴリのセグメンテーション効果は非常に低く、インスタンスセグメンテーションmAPはオブジェクト検出セグメンテーションmAPよりも30%低い

技術的ソリューションの詳細

Byte-IC-AutoML チームは、これを実現するために、Parallel Pre-trained Transformers (PPT) フレームワークを提案しました。このフレームワークは、主に次の 3 つのモジュールで構成されています: 1) 並列大規模事前トレーニング済みトランスフォーマー、2) バランス コピー アンド ペースト データ拡張、3) ピクセル レベルの非最大値抑制とモデル融合。

Transformerの大規模な並列事前トレーニング

最近の事前トレーニングに関する多くの記事では、大規模なデータセットで事前トレーニングされたモデルが、さまざまな下流のシナリオにうまく一般化できることが示されています。そのため、チームはCOCOおよびBigDetectionデータセットを使用してモデルを事前トレーニングしました。これにより、自然データと合成データ間のドメイン バイアスが大幅に軽減され、下流の合成データ シナリオでより少ないサンプルで迅速にトレーニングできるようになります。モデルレベルでは、Vision Transformers には CNN のような帰納的バイアスがなく、事前トレーニングのメリットを享受できることを考慮して、チームはUniFormerCBNetV2 を使用しました。 UniFormer は畳み込みと自己注意を統合し、ローカル冗長性とグローバル依存性という 2 つの主要な問題を解決し、効率的な特徴学習を実現します。 CBNetV2 アーキテクチャは、複数の同一バックボーン グループを連結し、複合的に接続して高性能な検出器を構築します。モデルのバックボーン特徴抽出器は Swin Transformer です。複数の大規模な事前学習済みTransformerを並列に配置し、出力結果を統合して学習し、最終結果を出力します。

検証データセットにおけるさまざまな方法のmAP

コピー&ペーストによるデータ拡張のバランス

コピー アンド ペースト手法は、特にロングテール分布を持つデータセットの場合、オブジェクトをランダムに貼り付けることによってインスタンス セグメンテーション モデルに優れた結果をもたらします。しかし、この方法ではすべてのカテゴリのサンプルが均等に増加し、カテゴリ分布のロングテール問題を根本的に緩和することはできません。そこで、チームはバランスコピーアンドペーストデータ強化法を提案しました。 Balance Copy-Paste は、有効なカテゴリ数に応じてカテゴリを適応的にサンプリングします。これにより、全体的なサンプル品質が向上し、サンプル数が少ないことやロングテール分布の問題が軽減され、最終的にはインスタンス セグメンテーションにおけるモデルの mAP が大幅に向上します。

Balance Copy-Pasteデータ拡張技術による改善

ピクセルレベルの非最大値抑制とモデル融合

検証セットでのモデル核融合アブレーション実験

テストセットでのモデル核融合アブレーション実験

現在、都市と交通のデータセットは、通常の車両と歩行者のみを含む、より一般的なシーンです。データセットには、障害者や運動障害のある人、および補助装置のカテゴリがありません。既存のデータセットを使用して取得された検出モデルでは、これらの人や物体を検出できません。

ByteDanceのByte-IC-AutoMLチームのこの技術ソリューションは、現在の自動運転や街頭シーンの理解に幅広く応用されています。これらの合成データから得られたモデルは、「車椅子」、「車椅子の人」、「松葉杖をついた人」などの珍しいカテゴリを認識できるため、人や物体をより細かく分類できるだけでなく、シーンの誤判断や誤解を避けることができます。さらに、この合成データ手法により、現実世界では比較的まれなカテゴリのデータを構築することができ、より一般化され、より完全なターゲット検出モデルをトレーニングすることができます。

Smart Creation は、ByteDance のマルチメディア革新技術研究機関であり、総合的なサービスプロバイダーです。コンピュータービジョン、グラフィックス、音声、撮影・編集、特殊効果、クライアント、AIプラットフォーム、サーバーエンジニアリングなどの技術分野をカバーし、部門内で最先端のアルゴリズム、エンジニアリングシステム、製品のクローズドループを実現し、社内の事業ラインと外部の協力顧客に、業界最先端のコンテンツ理解、コンテンツ作成、インタラクティブ体験と消費機能、およびさまざまな形式での業界ソリューションを提供することを目指しています。チームの技術力は、Volcano Engineを通じて外の世界に公開されています。

Volcano EngineはByteDance傘下のクラウドサービスプラットフォームです。ByteDanceが急速な発展の中で蓄積してきた成長手法、技術力、ツールを外部企業に公開し、クラウドインフラ、動画・コンテンツ配信、ビッグデータ、人工知能、開発・運用・保守サービスを提供し、企業がデジタルアップグレードで持続的な成長を遂げられるよう支援します。



<<:  大学入試結果が続々発表。ボランティア応募で人工知能が注目の選択肢に

>>:  データサイエンスについて知っておくべきこと: 10 の重要な概念 + 22 のグラフ

ブログ    
ブログ    

推薦する

5400億パラメータの大規模モデル進化ツリーが大幅に更新されました!最も詳細なプロンプトスキルを備えた85ページのLLM開発履歴

4月にリリースされるや否や開発者コミュニティで話題となった大規模言語モデルの概要が更新されました!こ...

運転教習業界にも「AI」の波が吹き荒れる、普及規模に注目

[[422314]]近年、都市化と道路交通建設の加速により、自動車旅行の需要が継続的に増加しており、...

面白いですね!プログラマーが AI を使って双子の息子を認識するんです! 「この Raspberry Pi の顔認識システムは私のものほど正確ではありません」

2021年までに、学習アルゴリズムと人工知能の研究を通じて、機械は多くの面で人間よりも優れていると...

...

人工知能はどのような革新と影響をもたらすのでしょうか?

現在、我が国の政策の推進と各方面の支援により、人工知能の発展は急速に進んでいます。人々が最も関心を持...

自動運転は飛躍的な進歩を遂げており、マスク氏は年内にL5レベルの自動運転が実現すると発言した。

自動運転技術は、世界中の大手自動車メーカーの主要な研究開発方向となっています。現在、多くの自動車メー...

C# の敏感な単語フィルタリング アルゴリズムの実装

この記事はWeChatの公開アカウント「UP Technology Control」から転載したもの...

Baidu の最新の IDL 成果: 自然言語から始めて、AI エージェントに人間のように学習することを教える

AI は驚異的な進歩を遂げていますが、多くの分野ではまだ限界があります。たとえば、コンピューター ゲ...

高齢化社会に積極的に対応、サービスロボットがトレンドを活用

統計によると、2021年には65歳以上の高齢者人口が2億人を超え、総人口の14.2%を占める。家庭用...

...

アルトマン氏の地位は再び危険にさらされているのか? ! OpenAIの取締役会が競合他社の参加を呼びかけ、Google Geminiの幹部を引き抜いた

アルトマン氏の地位は再び危険にさらされているのか?事情に詳しい人物によると、オープンAIの取締役であ...

プログラマーは「自殺」している。人工知能が進化し続ける中、人間は何をすべきか?

中国、日本、韓国の囲碁名人数十人がこのゲームに挑み、アルファ碁は1敗もせずに60連勝した。その後、世...

AI が電子商取引におけるウェブサイト アクセシビリティ訴訟のリスクを最小限に抑える方法

進化する人工知能により、電子商取引分野におけるウェブサイトのアクセシビリティ訴訟のリスクを最小限に抑...

なぜRLの一般化は難しいのか:バークレーの博士が認知POMDPと暗黙の部分観測性から説明する

[[437395]]今日の強化学習 (RL) には、収束性が低いなど多くの問題があります。比較的弱い...