AIの冬がまた来るのか?アメリカ人教授がarXivにAIを批判する記事を掲載し、Redditのネットユーザーから批判された

AIの冬がまた来るのか?アメリカ人教授がarXivにAIを批判する記事を掲載し、Redditのネットユーザーから批判された

人工知能の発展の勢いは非常に強く、一般の人々や専門家は楽観的です。しかし、歴史的には、1950年代初頭から「AIの春」と「AIの冬」のサイクルがありました。将来の発展を誰が予測できるでしょうか?

今日の AI の進歩は急速に進んでいるように見えますが、自動運転車、執事ロボット、インテリジェントな会話システムなどの技術の開発は、多くの人が想像するよりもはるかに困難です。

最近、メラニー・ミッチェルはarXivに記事を発表し、AIに関する研究者の4つの誤解が、この分野についての過信につながる可能性があると説明しました。

ミッチェルはアメリカのコンピューター科学者であり、ポートランド州立大学の教授です。彼の主な研究分野は複雑系、遺伝的アルゴリズム、セルオートマトンです。

[[397899]]

誤解1: AI開発は継続的なプロセスである

IBMは自動質問応答システム「Watson」を発表した際、これは認知システムとコンピューティングの新時代の第一歩であると述べた。

OpenAI は、GPT-3 言語ジェネレーターを汎用知能に向けた重要なステップであると説明しています。

しかし、ヒューバート・ドレフュスは、これは典型的な「第一歩の誤り」であり、木に登った猿がゆっくりと月に登ると考えているようなものだと考えています。

AI の開発は、まず特定のタスクに対する解決策を見つけ、それを汎用的な知能に組み合わせることです。これは真の AI を実現する方法ではないかもしれません。

多くの専門家が予測しているように、AI 開発の道のりには予期せぬ障害が多く存在し、継続的な開発が順風満帆であるはずがありません。

神話2: 単純なものには単純な解決策があり、難しい課題には複雑な解決策が必要である

ジョン・マッカーシーが「AIは想像以上に難しい」と悲観的に考えていたとき、ミンスキーはそれは単純なことさえ難しいからだと説明した。

人間は多くのことをするとき、なぜそれができるのかを考えません。たとえば、コミュニケーションや歩行は人間にとっては非常に単純なことですが、機械にとって実現するのは非常に複雑です。

逆に、チェスをしたり、何百もの言語間で翻訳したりするなど、人間にとって非常に複雑なことも、機械にとっては非常に簡単です。

これは「モラベックのパラドックス」としても知られており、知能テストやチェッカーでコンピューターを大人レベルのパフォーマンスにすることは比較的簡単ですが、1歳児の知覚や運動能力を習得させることはほぼ不可能です。

AI は私たちが考えるよりも難しいものです。なぜなら、私たちは世界を認識するときのプロセスがいかに複雑であるかに気づいていないからです。

誤解3: 人間の脳を模倣しようとする

前述のように、さまざまなタスクにおいて人間の脳と機械の間には大きなパフォーマンスのギャップがあり、AI分野の学者は人間の脳を模倣することを好みます。

AlphaGo は囲碁界の頂点に立つことに成功したが、何を考えているのかは誰にも分からない。唯一の答えは、「AlphaGo はただ勝ちたいだけだ」です。

[[397900]]

IBMはWatsonが読んだり理解したりできないことを知っていたし、DeepMindの研究者はAlphaGoが何を考えているのか分からないことを知っていた。

AI は多くのタスクで人間に勝っていますが、汎用的な知能にはまだ程遠いです。

誤解4: 知性はすべて脳にある

一般的に言えば、知能は人体とは別のものです。

一流のAI科学者たちは、自分たちの考えを人間の脳の構造に当てはめており、ヒントン氏はその代表的人物だ。彼はかつて、人間がどのように理解するかを理解したいなら、それをシミュレートするために何億ものニューロンが必要だと言ったことがある。

しかし、他の科学者は、AI の進歩はすべてムーアの法則のおかげであり、必ずしも人間の脳に頼る必要はないと考えています。

身体化認知理論とは、感情や非合理的な知性を捨て去り、食べることや寝ることなどを考慮して行動を制限する必要のない「純粋な知性」を創り出すというものである。

上記の 4 つの誤解は、著者が考える現在の AI 開発の限界です。

Reddit のユーザーは、この論文がなぜ話題になっているのかわからないが、上記の 4 つの理論はすでによく知られている、と述べた。

彼はまた、arxiv 上のこれらの論文のほとんどは、単に古いニュースを焼き直したものに過ぎないと率直に述べました。

一部のネットユーザーも、この論文は絶対に受け入れられないだろうと考えている。

どう思いますか?

<<:  Epoch は時代遅れであるだけでなく、有害でもあるのでしょうか? Reddit 機械学習フォーラムのディスカッション

>>:  自動運転タクシーの分野では競争が激しく、中国では百度がリードしています。

ブログ    
ブログ    

推薦する

MIT は Google と提携して 7 台のマルチタスク ロボットをトレーニングし、9,600 のタスクで 89% の成功率を達成しました。

タスクの数が増えるにつれて、現在の計算方法を使用して汎用の日常的なロボットを構築するコストは法外なも...

Baidu AI開発者会議が進行中、重要なニュースが次々と発表されている

百度AI開発者会議は予定通り7月4日から5日まで北京国家会議センターで開催されました。百度の創業者、...

機械学習に必要なエンジニアリングの量は将来大幅に削減されるだろう

将来的には、ML 製品の構築がより楽しくなり、これらのシステムはより良く機能するようになります。 M...

アリババAIはダブル11ショッピングフェスティバルの衣料品工場で運用され、欠陥認識の精度は人間を上回った。

AI がダブル 11 の生産と製造をスピードアップします。 10月29日、記者は、アリババのAIア...

...

...

AIによりドローンは未知の環境でも高速で自律飛行できる

チューリッヒ大学の研究者らは、複雑で未知の環境でもドローンが高速で自律飛行できるようにする新たな人工...

AIロボットが産業監視を強化

この機会に応えて、IBM と Boston Dynamics は協力して、IBM ソフトウェアと B...

シーメンスは自動化を推進力として変革の新たな機会を捉える

今日、企業のデジタル変革は避けられない選択肢となっており、従来の製造業では、変革の探求は実はずっと以...

2021 年に注目すべき 9 つの IoT トレンド

[[373805]]画像ソース: https://pixabay.com/images/id-577...

衝撃の2017年!この10日間は中国の人工知能の時代

2017年にはすでに「残高不足」が発生。今年、中国の人工知能開発は多くの進歩を遂げ、実りある成果を達...

Python を使用して画像からテーブルを抽出する

約 1 年前、私はファイルからデータ、主にテーブルに含まれるデータを抽出して構造化するタスクを割り当...

...

2022 年の 9 つの新しいテクノロジー トレンドと雇用機会

1. 人工知能(AI)と機械学習人工知能 (AI) は過去 10 年間で大きな注目を集めてきましたが...

音声技術市場には発展のチャンスがあるが、落とし穴には注意が必要

[[257487]] [51CTO.com クイック翻訳] 音声アシスタントの台頭により、マーケティ...