データは今日のビジネスに競争上の優位性をもたらすことができるのでしょうか?

データは今日のビジネスに競争上の優位性をもたらすことができるのでしょうか?

データは今やさまざまな産業に統合され、世界市場のハイライトとなっています。現在の経済成長はデータと切り離せないものであり、物的資産や人的資源などの他の重要な生産要素がなければ成長は不可能です。

[[394295]]

データは、世界中の企業にとって競争上の優位性と成長の大きな源です。データ分析により、企業の日常業務に関する秘密が明らかになり、より効果的かつ効率的な運営方法、リスクの価格設定、市場パターンの予測が可能になります。データは最大の成果であり、企業は実際の日常的なアプリケーションが業務に多大な価値をもたらすことができることをますます認識しています。

多くの企業は、顧客データにアクセスすることで不当な優位性が得られると考えています。顧客が増えれば増えるほど、収集できるデータも増え、そのデータを分析することで、消費者にアピールできる良い商品を販売できるようになります。そして、さらにデータを収集し、相手が無関係になるまで同じことを繰り返します。しかし、この考え方は必ずしも正しいとは限りません。データを利用した学習の指数関数的サイクルは、より多くの人々が製品を採用し、最終的に一定数のユーザーを獲得して競合他社を締め出すにつれて、製品がユーザーにとってますます価値あるものになるネットワーク効果に似ているように見えますが、それほど強力でも持続的でもないでしょう。

ただし、適切な状況であれば、顧客データは戦略的な防御策の開発に役立ちます。それはすべて、データが高く長期的な価値を持つか、排他的であるか、再現が難しい変更を促進するか、またはすぐに実現される洞察を提供するかによって決まります。これらの特性は企業に競争上の優位性をもたらします。

データに基づく学習

分析ソリューションでは、データに基づく学習アルゴリズムにより、企業は大量のデータを迅速に処理して理解できるようになります。顧客の個人情報、コンテンツの好み、検索習慣、電子メール、GPS 位置情報、ソーシャル メディア メッセージ、使用パターンはすべて CRM システムから直接収集できます。その後、機械学習アルゴリズムがデータを分析して、各個人に合わせた結果を表示します。

Sumit Aggarwal 氏 (Viacom18 | MIT Sloan | IIM の戦略およびデータ サイエンス責任者) が執筆した「競争優位性のためにデータを活用する方法」という記事のこのセクションで、彼は次のように述べています。データに裏付けられた競争優位性が持続可能かどうかは、業界の性質、組織によるデータの使用方法、データの品質、競合他社自体の品質によって決まります。データが競争上の優位性を生み出すタイミングに関するハーバード ビジネス レビューの記事では、競争上の優位性の持続性を決定する要因として次の要因が挙げられています。

  • データに付加される価値が高ければ高いほど、そのデータが長く保存される可能性が高くなります。
  • データの限界値が減少する速度が遅いほど、結果として生じる障壁は強くなります。
  • データが古くなるのが早ければ早いほど、競合他社や新規参入者にとっては何年ものデータから学習する必要がなくなるため、容易になります。
  • 購入または置き換えができない固有の顧客データは、防御障壁となります。

  • 競合他社がコピーするためにデータを必要としない製品の機能強化は、永続的な優位性を生み出しません。
  • データから得られた洞察を製品に組み込む速度。学習サイクルが速いため、競合他社が追いつくのは困難です。

<<:  AIと「喧嘩」したくない?人々はどんなスマートホーム体験を望んでいるのでしょうか?

>>:  マイクロソフトによるニュアンスの買収が大きな意味を持つ理由

ブログ    
ブログ    
ブログ    

推薦する

連合継続学習における最新の研究の進歩の概要

データプライバシーの制限により、複数のセンター間でのデータ共有は制限されており、フェデレーテッドラー...

...

2024 年のコンテナ技術予測: パフォーマンス、AI、セキュリティの採用

パフォーマンス重視のコンテナ技術向けのツールとサービスを提供する Sylabs は、2024 年まで...

トランプ大統領、米国の製造業の発展にロボット活用を視野に

トランプ大統領は米国の製造業がかつての栄光を取り戻すことを望んでいる。彼はロボットに狙いを定め、米国...

自動化戦略の6つの重要な要素

[[440295]] IT 自動化は多くの場合、自然に発生します。たとえば、システム管理者は、日常業...

...

AIの旅を始めるのに役立つ3つの重要なステップ

すべての IT 問題には学習曲線と転換点があり、解決策が見つかる「なるほど!」という瞬間があります。...

なぜほとんどの経営幹部は自社がAI導入の準備ができていないと考えているのか

この分野の専門家は、AI技術が従業員に大きな変化をもたらし、企業のビジネスのやり方を変えていると述べ...

報告書では、人工知能の新世代について再び言及しており、3つのキーワードが完全に解釈されている。

最近、「両会」の政府活動報告では、人工知能が再び言及された。「新世代人工知能の研究開発と応用を強化し...

四川大学の優秀な卒業生がGitHubでプロジェクトを構築し、完成前に多くの賞賛を受けた。

近年、ディープラーニングは音声、画像、自然言語処理などの分野で非常に優れた成果を上げており、当然なが...

Amazon SageMaker を使用した機械学習モデルのトレーニングとデプロイ

[[248715]] [51CTO.com 速訳] re:Invent 2017 カンファレンスで ...

精密人工知能:原子核物理学と素粒子物理学における新たな力

素粒子物理学の標準モデルは、既知のすべての素粒子と、宇宙を支配する 4 つの基本的な力のうち 3 つ...

機械学習研究開発プラットフォームの選択

機械学習は現在隆盛を極めていますが、機械学習を学習・研究し、実稼働環境で活用したい場合には、プラット...

なぜ「ハイエンド」アルゴリズムエンジニアはデータ移民労働者になったのでしょうか?

まず、Zhihu の「アルゴリズム エンジニアになるのはどんな感じか」という質問に対する私の回答を共...

プログラマーは30歳で転職すべきでしょうか?曲がるならどちらの方向がいいでしょうか?

最近、皆さんは次のような H5 に悩まされていると思います。広告ポスター500枚の予算は2,000元...