モノのインターネットを支援するAI搭載量子コンピューティング

モノのインターネットを支援するAI搭載量子コンピューティング

量子コンピューティングはまだ開発段階にありますが、人工知能とモノのインターネットの開発を加速させる新しい時代に入り始めています。

最近のフォーブスの記事で、作家のチャック・ブルックスは、量子コンピューティングは人類が直面している最大かつ最も複雑な課題のいくつかに取り組むのに役立つと考えられていると述べた。ブルックス氏はサイバーセキュリティと新興技術の思想的リーダーであり、学界、産業界、研究者、政府を結集するために結成された量子セキュリティアライアンスの議長を務めています。

量子コンピューティングは、ほぼすべての電子機器がインターネット上でアクセス可能になるモノのインターネットの世界において、タイムリーなタイミングで登場します。接続されるデバイスの数は急速に増加しており、Business Insider Intelligence の推定によると、2023 年までに、センサー、データ、機械、人、およびそれらの間の相互作用を含む 400 億個の IoT デバイスが世界中に設置されることになります。

課題は、これらすべてのデバイスを監視し、質の高いサービスを確保する方法です。 「あらゆる新しい技術や機能に対して質の高いサービスを提供するには、応答性、拡張性、プロセス、効率性が必要だ。特に何兆個ものセンサーに対してはそうだ」とブルックス氏は書いている。

量子テクノロジーは、ネットワーク遅延、相互運用性、人工知能、リアルタイム分析、予測分析、ストレージとデータメモリの増加、安全なクラウドコンピューティング、新興の 5G 通信インフラストラクチャへの対応にも役立ちます。

「量子コンピューティングとモノのインターネットが融合するにつれて、政策問題の新たな進化するエコシステムも生まれるだろう」と彼は示唆した。これには倫理、相互運用性プロトコル、サイバーセキュリティ、プライバシー/監視、複雑な自律システム、優れたビジネス慣行などが含まれる。

[[326218]]

量子論

従来のコンピューターの基礎はトランジスタであり、ビットが 0 または 1 などのラベルが付けられたバイナリ システムで処理を行います。量子論によれば、2 つの物体が同時に 2 つの場所に存在できるとされています。 SnapOut Market Consultants のマネージング ディレクターである Chloe Sharp 博士が最近 Disruption Hub に書いた記事では、この理論をコンピューティングに利用して、より複雑で強力なシステムを作成できると示唆しています。

量子コンピュータは、0と1の任意の比率を同時にとることができる「量子ビット」を使用するため、より多くの情報をより速く処理できます。使用事例は、顔認識や複雑なデータベース検索から、機械学習やより安全な暗号化まで多岐にわたります。

まだ研究開発段階ではありますが、量子コンピューティングはいくつかの市場に進出し始めています。著者らは、量子コンピューティングが広く受け入れられるためには、特にユーザーとの信頼関係を構築するという点で、ユーザーエクスペリエンス(UX)を改善する必要があると示唆している。

「新興技術に関する私たちの経験では、製品やサービスを開発する人々は、自分たちが極めて複雑な技術を扱っていることを忘れがちです。そのため、すべての量子および IoT 製品に対してユーザビリティ テストを実施し、それらがアクセスしやすく使いやすく、実際のユーザーの問題を解決できることを確認することが絶対に重要です」とシャープ博士はアドバイスします。

量子コンピューティングのセキュリティについてはある程度の不確実性があります。

量子コンピューティングのセキュリティに焦点を当てたIDQは、CBInsightsのレポートを引用し、量子コンピューティングのセキュリティ手法への関心が高まるにつれて、量子鍵配布(QKD)への関心が2020年に急増すると予想されると述べた。 QKD は、2 つの当事者が、自分たちだけが知っている共有のランダム キーを生成し、そのキーを使用してメッセージを暗号化および復号化できる安全な通信方法です。

報告書ではまた、量子コンピューターのサポートがあれば人工知能はさらに強力になるとも指摘されている。

マイクロソフトとアマゾンが量子コンピューティング市場への参入を最近発表したこと、そしてグーグルが自社の進歩について「量子超越性」を主張したことは、この加速が起こっていることのさらなる証拠である。

<<:  なぜ人工知能が将来主流になるのか、これを読めば分かる

>>:  ポストパンデミックの時代に、伝統的なオフィスビルは時代遅れになるのでしょうか?

ブログ    
ブログ    

推薦する

ビジネス界がディープラーニングの導入に消極的である4つの理由

[51CTO.com クイック翻訳] 過去数年間にわたり、多くの企業がデータ主導のアプローチを採用す...

TensorFlowはディープラーニングに基づく画像補完を実装する

[[191845]]目次■ はじめに■ ステップ1: 画像を確率分布のサンプルとして理解する不足して...

...

エッジ AI で建物のシステム障害を回避

ビルの管理者や運営者は、暖房や冷房、照明システム、エレベーターの故障など、ビルのシステムや設備の予期...

AIopsにおける人工知能

組織にとって、機械学習 (ML)、自動化、人工知能 (AI) 機能を備えたテクノロジー プラットフォ...

顔認識を完了するための3行のPythonコード

顔認識パッケージこれは世界で最もシンプルな顔認識ライブラリです。 Python リファレンスまたはコ...

道路が車両を制御することが自動運転の新たな方向性となるのでしょうか?

自動運転技術は、人工知能、ビジュアルコンピューティング、レーダー、監視デバイス、全地球測位システムを...

マグロのように尾の弾力性を動的に調整する「ロボットマグロ」がサイエンス誌に掲載

バージニア大学のダン・クイン教授と博士研究員のゾン・チアン氏は、生体力学、流体力学、ロボット工学を組...

メタバースは過大評価されてきたが、2050年までにAIによって現実のものとなる

メタバースの概念が誇張され、まるでそれが本当に存在するかのように人々が話していることは間違いありませ...

人工知能は「新たな生産要素」である

[[186158]]何人かの経済学者に話を聞いてみれば、彼らはほぼ間違いなく、生産性の伸びの弱さが現...

VB.NET バブルソートアルゴリズムの詳細な説明

VB.NET を学習する場合、中国語の情報が非常に少なく、大多数のプログラマーのニーズを満たすのが難...

スマートヘルスケアは急速に普及しつつあり、さまざまなスマートテクノロジーが好まれている

人々の生活の重要な分野として、医療産業の発展は大きな注目を集めています。現在、医師の診察の難しさや高...

EasyDLコンピューティング機能:10種類以上のチップをサポートし、速度が数倍速く、ワンクリックで展開可能

科学研究、金融、小売から工業、農業まで、ますます多くの業界やビジネス シナリオで、効率の向上とコスト...