AI インフラストラクチャ スタックをわかりやすく解説し、AI プロジェクトをより迅速に展開

AI インフラストラクチャ スタックをわかりやすく解説し、AI プロジェクトをより迅速に展開

[51CTO.com クイック翻訳] 多くの企業が AI への投資を増やすにつれて、開発者とエンジニアは、企業全体に AI プロジェクトをより迅速かつ大規模に展開しなければならないというプレッシャーに直面しています。

この急速に進化する環境において、さまざまなユーザーや目的に合わせて設計されることが多い AI ツールとサービスの拡大するエコシステムを単純に評価することは、大きな課題です。

この課題に対処するために、AI インフラストラクチャ スタックを作成しました。これは、AI テクノロジー スタックのレイヤーと各レイヤー内のベンダーを視覚的に表示し、AI エコシステムの全体像をより明確にするエコシステム ダイアグラムです。

Intel Capital では、これは AI の将来に最も大きなプラスの影響を与えると思われる投資を特定するのに役立ちますが、開発者やエンジニアが AI プロジェクトを最も効果的に実行するために必要なリソースを決定するのにも役立ちます。

図1. AIインフラストラクチャスタック

テクノロジー インフラストラクチャ スタックは、導入先の企業や業界の種類に関係なく、AI 開発における基本的なニーズに対応する水平ソリューションに重点を置いています。特定の業界向けの垂直ソリューションは含まれていません。

スタックは 7 つのレイヤーで構成され、それぞれが 2 つの部分に分かれており、非常に異なるワークロード、データ ボリューム、コンピューティングとメモリの要件、および SLA 向けに構築されたソリューションが含まれています。

  • アルゴリズムを通じてデータを処理し、モデルを作成するためのソリューションを探索/トレーニングします。
  • 生産/推論ソリューションでは、トレーニング済みのモデルを使用して、eコマース サイトで「こちらもおすすめ」の製品推奨事項を特定したり、自動運転車でブレーキをかけるタイミングを決定したりするなど、推奨事項が必要な場合に応答します。

すべてを接続するのが、企業の分散エンジン、つまりコンピューティング リソース全体にワークロードを分散するコンピューティング プラットフォームです。

スタック層の数は次のとおりです。

  1. ハードウェア。適切なハードウェアは、データ センターで実行されるトレーニング ソリューションと、データ センターおよびエッジ デバイスで実行される推論ソリューションの両方にとって不可欠です。
  2. ソフトウェアアクセラレータ。これらは、機械学習 (ML) ライブラリを最適化するためのコンパイラと低レベルカーネルです。
  3. 図書館。これらは ML モデルのトレーニングに使用されるライブラリです。
  4. データ サイエンス フレームワーク。このレイヤーには、ライブラリを他のツールと統合するツールが含まれています。
  5. 配置。これらのツールは、ML トレーニングとモデル推論の実行をパッケージ化し、展開し、管理します。このレイヤーがなければ、DevOps は不可能になります。
  6. オートメーション。これらのツールは、モデルのトレーニングやその他の ML タスク用のデータの準備作業を簡素化し、部分的に自動化します。
  7. 自律性。このレイヤーのツールは、ML モデルの構築、展開、または保守の側面を自動化します。これは AI が AI をトレーニングする場所です。

各レイヤーのツールとサービスは AI の開発と展開を加速させますが、すべての新興テクノロジーと同様に、どのツールとサービスを使用するかを決定する際にはトレードオフが存在します。たとえば、AutoML を使用すると ML モデルの開発をスピードアップできますが、トレーニングはカスタム モデルほど正確ではない可能性があります。

ユーザーは、プロジェクトのニーズに基づいて、各レイヤーで使用するツールとサービスを決定する必要があります。

図 2. AI インフラストラクチャ スタックの上位レベルの詳細ビュー。

AI バリュー チェーンの最上位には、オーケストレーション、自動化、自律性レイヤーがあります。自律性レイヤーは、データ サイエンティストだけでなく誰もが AI にアクセスして使用できるようにすることで、AI を民主化する上でさらに重要になります。

これらのレイヤーはスタックの最新レイヤーであり、AI の継続的インテグレーションと継続的デプロイメント (CI/CD) をサポートする AI ツールとサービスを備えていますが、スタック全体でイノベーションが起こっており、新たな境界を打ち破り、使いやすさを向上させ、AI を新しいコミュニティに導入していることに留意することが重要です。

最後に、ツール、サービス、企業(その多くはオープンソース)の例をモデルに追加します。これらは、市場にあるすべてのオプションを網羅しているわけではありません。AI ソリューションを検討している方のためのサンプルとして用意されており、各層で幅広い選択肢が提供されています。

図3. AIインフラストラクチャスタックにおけるツール、サービス、企業の代表例。

AIはもはや初期段階ではありません。 AI を使用して製品やサービスを改善したり、効率を高めて意思決定を改善したりしたいと考えている企業には、ML および AI モデルを構築、展開、監視するためのツールとサービスの豊富なエコシステムが提供されています。

この分野で起こっているすべての出来事と、さまざまなコンポーネントがどのように組み合わさっているかを注意深く監視することで、AI プロジェクトの成否が決まります。

AI インフラストラクチャ スタックの謎を解く

[51CTOによる翻訳。パートナーサイトに転載する場合は、元の翻訳者と出典を51CTO.comとして明記してください]

<<:  他人があなたのコンピュータに触れることをもう恐れる必要はありません! Pythonによるリアルタイム監視

>>:  テスラの自動操縦装置が別の人をはねて死亡させ、被害者の家族が訴訟を起こす

ブログ    
ブログ    
ブログ    

推薦する

ChatGPTスーパープラグインをテスト済み: 経験ゼロでも5分でゲームを開発

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

世界の通信業界の専門家が2024年を予測

世界の通信業界の専門家が2024年を予測5G が世界をカバーし、人工知能がネットワークを再形成し、デ...

ロボットR2-D2は50年後に人間の仕事を完全に置き換えるでしょうか?

[51CTO.com クイック翻訳] 海外メディアの報道によると、誰かが設計しているロボットがあな...

2019年を迎え、人工知能技術の動向はどのように発展していくのでしょうか?

2018 年は過去のものとなりましたが、AI は依然として今年の主要なテクノロジー トレンドの 1...

自動運転の未来 - 4Dミリ波レーダー

現在、自動運転車の知覚の実現は、車両に搭載されたレーザーレーダー、車載カメラ、ミリ波レーダーなどのセ...

OpenAI は大規模なモデル ストアを立ち上げる予定で、開発者は製品を棚に置くことができます。

最近、OpenAIの人気が高まっています。GPTモデル機能のアップデートからセキュリティ問題まで、世...

今後 5 年以内にトラックは自動運転できるようになるでしょうか? 「人工知能の女王」はシノトラックでこの答えを出した

「人工知能の女王」ジャスティン・カッセル氏が済南の中国重汽で「人工知能と世界の未来経済」について講演...

企業が人工知能を導入する際に知っておくべき5つの誤解

[[392106]] AI は広く普及しているにもかかわらず、知識と認識のギャップにより、商業的な導...

...

...

Google、異常ケース検出のターンアラウンド時間を28%短縮できるAIシステムを開発

最近、Google チームのもう一つの主要な研究成果が Nature 誌に掲載されました。研究成果は...

Applitools はビジュアル AI テストをネイティブ モバイル アプリに拡張します

Applitools は本日、オンライン イベント「Future Testing: Mobile」に...

...

ファーウェイクラウドが年間人工知能リストで3つの賞を受賞

このほど、Synced Machine Intelligenceが主催する「AI China」Syn...