継続的インテリジェンスとは何ですか?モノのインターネットにどのような影響を与えるでしょうか?

継続的インテリジェンスとは何ですか?モノのインターネットにどのような影響を与えるでしょうか?

IoTの世界は、希望に満ちた2020年を迎えようとしています。 5G企業は、2020年は5Gが公共部門に定着し、普及する年になると繰り返し主張している。

[[315829]]

研究者らはまた、2020 年は継続的インテリジェンス (CI) が IoT 分野に参入する年になると主張しています。しかし、継続的なインテリジェンスとは何でしょうか。また、IoT はそこからどのようなメリットを得ることができるのでしょうか。

継続的インテリジェンスとは何ですか?

継続的な知能とは何かを理解するために、通常のコンピュータ知能を見てみましょう。コンピュータが「問題を解決する」場合、通常は、一連の入力を受け取り、それを処理して、出力を出します。いくつかの値を入力し、「等しい」ボタンをクリックすると結果が表示される計算機の知能を想像してみてください。

これは素晴らしいことですが、結果を最新の状態に保つには、新しいデータを手動で入力する必要があります。データが光の速さで蓄積される世界では、データを手動で入力し続けるのは困難です。

ここで継続的なインテリジェンスが役立ちます。コンピューターは、入力を受け取り、出力を吐き出して、それで終わりにするのではなく、データを処理し続け、結果を生成します。過去のすべてのイベントを調べ、新しい情報と組み合わせて結果を作成します。

なぜこれが IoT にとって重要なのでしょうか?

モノのインターネットは、静的で予測可能な技術分野ではありません。毎日何百万もの IoT デバイスからデータが絶えず流入したり流出したりしているので、一般の人がそれをすべて把握するのは困難です。

解決策は継続的なインテリジェンスを使用することです。受信データを処理し、現在の結果を継続的に改善できる人工知能を実装することで、コンピュータ システムは常に最先端の状態になります。

この調査では、クラウド間で大量のデータがやり取りされていることが原因かもしれないと示唆している。特に研究者らは、ウェブサイトとサーバーが情報をやり取りする「エンドツーエンド通信」を意味する「E2Eプラットフォーム」の台頭に注目した。 (IoT のホームページより) 継続的なインテリジェンスは、このデータ フローを監視し、人間に対応するリアルタイムの応答を作成できます。

これらすべてをまとめると、継続的なインテリジェンスがモノのインターネットにとってなぜ重要であるかがわかります。人間がこのすべてのデータを監視して手動でコンピューターに入力することは不可能です。それでも、企業がシステムを導入し、その仕組みを理解するには多大な労力がかかります。

継続的なインテリジェンスを実装することで、制御を AI に引き渡し、トレーニングの必要性を減らします。これにより、システムの使用が非常に簡単になります。技術専門家は、この技術がビジネスの実装に大きな摩擦を生じさせないことから、この技術を「摩擦のない」技術と呼んでいます。

そのため、すべての作業を自動的に実行し、最新の情報を提供する、使いやすいテクノロジーを利用できるようになります。このことから、研究者が 2020 年は継続的インテリジェンスの年であると主張している理由が簡単にわかります。

よりスマートなIoTシステム

研究者たちは、2020 年は継続的なインテリジェンスが IoT の世界に導入される年になると主張しています。 「継続的インテリジェンス」という用語自体にはあまり意味がありませんが、それがどのように機能し、どのようにビジネスに役立つかを詳しく分析すると、企業がそれを導入したい理由が理解できます。

AIにもっと責任を持たせるのが賢明だと思いますか?それとも、すべてが適切に機能していることを確認するために人間が存在するべきでしょうか?

<<:  感染症の流行に直面して、AIがいかに有用であるかを実感した

>>:  AIが伝染病と闘う: 時折の恥ずかしさの裏に究極の防壁が現れる

ブログ    
ブログ    

推薦する

...

...

人工知能の歴史 - チューリングテストからビッグデータまで

[[194770]]私はずっと、人工知能がどのように提案されたのか、その背後にはどのような物語がある...

NvidiaはAIを使用してGPU演算回路を設計します。これは最先端のEDAよりも25%小さく、より高速で効率的です。

膨大な数の演算回路を搭載した NVIDIA GPU により、AI、高性能コンピューティング、コンピュ...

...

顔を自由に編集! Adobe が新世代の GAN アーティファクトを発表: 最大 35 の顔属性の変更をサポート

画像合成における重要な問題は、画像内のエンタングルメント問題です。たとえば、人物の顔にあるすべてのひ...

...

安定したビデオ拡散がここにあります、コードウェイトはオンラインです

AI描画で有名なStability AIが、ついにAI生成動画の分野に参入した。今週の火曜日、Sta...

今日のトーク: 人工知能、ロボット、そして中国のバレンタインデー

[[417375]]あと一日で中国のバレンタインデーになります。遠く離れたアルタイルと明るいベガは、...

...

ニューラルネットワークの過剰適合を避ける 5 つのテクニック

この記事では、ニューラル ネットワークをトレーニングするときに過剰適合を回避する 5 つの手法を紹介...

エッジコンピューティングにおける AI の利点

エッジと極端エッジの間でこれがどのように展開するか、また無線アクセス ネットワークにどのような階層が...

...

Google は、開発者が独自のモデルを構築できるようにエンドツーエンドの AI プラットフォームをリリースしました。

Google は一連の人工知能ツールをリリースしました。これらすべての新しいツールとサービスの核と...

...