エッジと極端エッジの間でこれがどのように展開するか、また無線アクセス ネットワークにどのような階層が出現するかを見るのは興味深いでしょう。 Synopsys の設計ソフトウェア IP プロダクト マーケティング マネージャーである Ron Lowman 氏は最近、モバイル コンピューティングと AI がエッジに近づいている理由と、こうした変化が IP の選択とシステム アーキテクチャにどのような影響を与えるかについての洞察を提供する技術概要を公開しました。 無線アクセスネットワークの階層 今では、基本的な原則はよく理解されています。数十億または数兆のエッジ デバイスからゼタバイト単位のデータをクラウドに転送することは不可能です。電力と帯域幅の面でコストがかかりすぎるからです。そこで、コンピューティングをエッジに近づけ始めました。この方法では、より多くのデータがローカルで処理され、必要なホップが短くなります。ロンは、拡張現実 (AR) アプリケーションで Microsoft HoloLens を使用したラトガース大学/Inria の研究を引用しました。そのタスクは、QR コードの認識、シーンのセグメンテーション、位置決め、マッピングを実行することです。いずれの場合も、HoloLens は最初にエッジ サーバーに接続します。ある実験では、AI 機能がクラウド サーバーに移行されました。 2 番目の実験では、これらの操作はエッジ サーバーで実行されました。最初のケースでは、往復の合計遅延は 80 ~ 100 ミリ秒以上になります。 2 番目のケースでは、わずか 2 ~ 10 ミリ秒です。 これは驚くべきことではありませんが、その意味合いは重要です。クラウドの遅延により、AR ユーザーは簡単に乗り物酔いを起こす可能性があります。他のアプリケーションでは、これは安全上の問題になる可能性があります。エッジ コンピューティングでは、ラウンドトリップの遅延はそれほど問題になりません。ロン氏は、5G では遅延を 1 ミリ秒未満に短縮できるユースケースが提供されると付け加えました。エッジベースのコンピューティングは不可能になります。レイテンシの影響を受けないアプリケーションの場合、クラウドを使用しても問題ありません (ただし、転送中のコストのオーバーヘッドやプライバシーの問題を気にしない限り)。リアルタイム アプリケーションの場合、コンピューティングと AI はアプリケーションの近くにある必要があります。 クラウドからエッジまでのアーキテクチャ ロンは、エッジ コンピューティングの 3 つの異なるアーキテクチャについて話しました。彼は、エッジとはクラウドを超えたものであり、複数のソースからの使用モデルとアーキテクチャを活用するものだと考えています。最上位には、地域データ センター、よりローカルなデータ センター (工場や農場など)、および集約/ゲートウェイがあります。それぞれ独自のパフォーマンスとパワー プロファイルを備えています。 地域データセンターは、同じ機能を持ちながら容量と電力要件が低い、縮小されたクラウドです。ローカルサーバーの例としては、チックフィレイが挙げられます。同社はファーストフード店にローカルサーバーを設置し、データを収集・処理して、ローカルキッチンの運営を最適化しています。 しかし、ファーストフードレストランにおけるアグリゲーター/ゲートウェイの機能は非常に限られています。このアーキテクチャには、いくつかの上位レベルのステップがあり、この階層はさらに進んで、エッジ デバイスやバッテリー駆動のデバイスにまで至ります。リモコンでは、音声起動とトリガーワード認識がリモコン内部で実行されることが理解される。また、ゲートウェイは、より重い作業 (コマンドの認識など) を実行する場合もあります。 最後に、SoC アーキテクチャと、サーバー SoC および AI アクセラレータに組み込まれる IP への影響について説明しました。 x86 ベクトル ニューラル ネットワーク拡張はおそらく大きな影響を与えないだろうという彼の意見に私は同意します。結局のところ、Intel が Nervana (そして現在は Habana) を開発したのには理由があります。より一般的には、AI アクセラレータ アーキテクチャが爆発的に増加しています。極端なエッジから 5G インフラストラクチャ、クラウドまで、垂直アプリケーションをサポートします。 AI は、あらゆる形態のエッジ コンピューティングと非エッジ コンピューティングでその地位を確立しつつあります。 |
<<: ニューヨーク州が顔認識を「禁止」する法律を制定。なぜキャンパス内で AI が頻繁に「失敗」するのか?
>>: ロボットは「常識」を知っており、物事をはるかに速く見つけることができます。CMU は新しいセマンティック ナビゲーション ロボットを開発しました。
近年、人工知能はその地位の向上に伴い、国からますます注目を集めています。 2015年7月には「国務院...
[[354643]]開発の際、アルゴリズムの品質をどのように評価し、アルゴリズムの効率をどのように説...
AIは現代のビジネスとテクノロジーのエコシステムをさまざまな形で大きく変えてきました。過去数年間に...
この記事では、TensorFlow 2.0 の 10 の機能について説明します。 [[326673]...
カスタマイズ性と制御性を約束するコンセプトであるBring Your Own Key (BYOK)が...
先日終了したCESで、ドイツのコンチネンタルAGは、新しい物流ロボット、荷物配達ロボット犬「ANYM...
かわいい子犬や遊び好きな子猫を見るのが好きな人はいないでしょうか?特に、新型コロナウイルス感染症のパ...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
2023 年には、マルチモーダル大規模モデルの飛躍的な発展が見られるでしょう。マルチモーダル大規模言...
統合ストリームとバッチサンプルの生成プロセスを明らかにし、Hudiカーネルの最適化と変換を共有し、デ...
[[382637]]データセンターが国の経済の原動力となるにつれ、人工知能を導入することでより高い...