エッジコンピューティングにおける AI の利点

エッジコンピューティングにおける AI の利点

エッジと極端エッジの間でこれがどのように展開するか、また無線アクセス ネットワークにどのような階層が出現するかを見るのは興味深いでしょう。 Synopsys の設計ソフトウェア IP プロダクト マーケティング マネージャーである Ron Lowman 氏は最近、モバイル コンピューティングと AI がエッジに近づいている理由と、こうした変化が IP の選択とシステム アーキテクチャにどのような影響を与えるかについての洞察を提供する技術概要を公開しました。

無線アクセスネットワークの階層

今では、基本的な原則はよく理解されています。数十億または数兆のエッジ デバイスからゼタバイト単位のデータをクラウドに転送することは不可能です。電力と帯域幅の面でコストがかかりすぎるからです。そこで、コンピューティングをエッジに近づけ始めました。この方法では、より多くのデータがローカルで処理され、必要なホップが短くなります。ロンは、拡張現実 (AR) アプリケーションで Microsoft HoloLens を使用したラトガース大学/Inria の研究を引用しました。そのタスクは、QR コードの認識、シーンのセグメンテーション、位置決め、マッピングを実行することです。いずれの場合も、HoloLens は最初にエッジ サーバーに接続します。ある実験では、AI 機能がクラウド サーバーに移行されました。 2 番目の実験では、これらの操作はエッジ サーバーで実行されました。最初のケースでは、往復の合計遅延は 80 ~ 100 ミリ秒以上になります。 2 番目のケースでは、わずか 2 ~ 10 ミリ秒です。

これは驚くべきことではありませんが、その意味合いは重要です。クラウドの遅延により、AR ユーザーは簡単に乗り物酔いを起こす可能性があります。他のアプリケーションでは、これは安全上の問題になる可能性があります。エッジ コンピューティングでは、ラウンドトリップの遅延はそれほど問題になりません。ロン氏は、5G では遅延を 1 ミリ秒未満に短縮できるユースケースが提供されると付け加えました。エッジベースのコンピューティングは不可能になります。レイテンシの影響を受けないアプリケーションの場合、クラウドを使用しても問題ありません (ただし、転送中のコストのオーバーヘッドやプライバシーの問題を気にしない限り)。リアルタイム アプリケーションの場合、コンピューティングと AI はアプリケーションの近くにある必要があります。

クラウドからエッジまでのアーキテクチャ

ロンは、エッジ コンピューティングの 3 つの異なるアーキテクチャについて話しました。彼は、エッジとはクラウドを超えたものであり、複数のソースからの使用モデルとアーキテクチャを活用するものだと考えています。最上位には、地域データ センター、よりローカルなデータ センター (工場や農場など)、および集約/ゲートウェイがあります。それぞれ独自のパフォーマンスとパワー プロファイルを備えています。

地域データセンターは、同じ機能を持ちながら容量と電力要件が低い、縮小されたクラウドです。ローカルサーバーの例としては、チックフィレイが挙げられます。同社はファーストフード店にローカルサーバーを設置し、データを収集・処理して、ローカルキッチンの運営を最適化しています。

しかし、ファーストフードレストランにおけるアグリゲーター/ゲートウェイの機能は非常に限られています。このアーキテクチャには、いくつかの上位レベルのステップがあり、この階層はさらに進んで、エッジ デバイスやバッテリー駆動のデバイスにまで至ります。リモコンでは、音声起動とトリガーワード認識がリモコン内部で実行されることが理解される。また、ゲートウェイは、より重い作業 (コマンドの認識など) を実行する場合もあります。

最後に、SoC アーキテクチャと、サーバー SoC および AI アクセラレータに組み込まれる IP への影響について説明しました。 x86 ベクトル ニューラル ネットワーク拡張はおそらく大きな影響を与えないだろうという彼の意見に私は同意します。結局のところ、Intel が Nervana (そして現在は Habana) を開発したのには理由があります。より一般的には、AI アクセラレータ アーキテクチャが爆発的に増加しています。極端なエッジから 5G インフラストラクチャ、クラウドまで、垂直アプリケーションをサポートします。 AI は、あらゆる形態のエッジ コンピューティングと非エッジ コンピューティングでその地位を確立しつつあります。

<<:  ニューヨーク州が顔認識を「禁止」する法律を制定。なぜキャンパス内で AI が頻繁に「失敗」するのか?

>>:  ロボットは「常識」を知っており、物事をはるかに速く見つけることができます。CMU は新しいセマンティック ナビゲーション ロボットを開発しました。

ブログ    
ブログ    
ブログ    

推薦する

アルゴリズム問題演習 - 大規模ブラックリスト IP マッチング

多くの IT 企業では、アルゴリズムは面接で非常に重要な部分を占めていますが、実際の仕事でアルゴリズ...

次世代オーディオアシスタント: AI がオーディオ体験をどう形作るか

人工知能(AI)はここ数か月、ビジネス環境における流行語となっています。効率性の向上、コストの削減、...

...

人工知能企業が大規模なデータ漏洩事件に見舞われ、250万人以上のデータが流出

[[258473]]最近、セキュリティ分野に注力する国内の人工知能企業で大規模なデータ漏洩事件が発生...

研究者はAIを活用して新型コロナウイルスの理解を深める

[[319373]]新型コロナウイルスが昨年12月に中国・武漢で発生して以来、過去数か月間に2,00...

科学者たちは、人間のチームが海洋ゴミを見つけるのを助けるために人工知能を搭載したドローンを開発している

ニューアトラス誌の報道によると、海洋ゴミは、海に漂うゴミと海岸に打ち上げられるゴミの両方の形で大きな...

仮想通貨取引ロボットが手動取引に取って代わり、システム開発が進む

定量取引は高頻度取引の一種です。毎日無数の取引ペアが生成されます。手動で行う場合、多くの市場機会が不...

自然言語処理にディープラーニングを使用するにはどうすればよいでしょうか?ベストプラクティスのリストはこちら

この記事の著者である Sebastian Ruder は、自然言語処理にディープラーニングを使用する...

人工知能によって人々の仕事が失われることは確実だが、仕事がなくなることはないと言われているのはなぜでしょうか。

1956年に人工知能の概念が提案されて以来、人工知能と労働市場の関係については議論されてきました。...

それでおしまい? Gptsのプロンプト単語をランダムにクロールします

11月7日のOpenAI開発者会議でサム・アルトマンがGptsを正式に発表しリリースして以来、Gpt...

イラストレーターが10年後の情景を描く、ロボットが人間に取って代わり、38%の人が解雇に直面

科学技術の発展にはいつも驚かされます。携帯電話がいつからこんなにスマートになったのか、コンピューター...

世界の自動運転事故を比較することで、そのデータと真実が明らかになった。

最近起きた自動車事故は、被害者の身元が明らかになったこと、運転支援技術の台頭と普及、中国の有名自動車...

人工知能がサイバー防御を強化

ビッグデータと高性能コンピューティング リソースにアクセスすることで、企業は新しい人工知能ツールと機...

...