Li Mu らによるオープンソースの中国語書籍「Hands-On Deep Learning」に PyTorch バージョンが登場しました。元の本のサンプルコードでも実際のプロジェクトでも、元の MXNet はシームレスに PyTorch コードに変換できます。プロジェクトの作者は、元の本の内容を基本的に変更せずに、MXNet コードを PyTorch に変換しました。DL と PyTorch を学びたい友人は、ぜひ試してみてください。
近年、コンピュータサイエンスの学生、技術者、あるいは長年テクノロジーやインターネット業界で働いてきた他の実務家など、人々のディープラーニングへの関心はかつてないほど高まっています。しかし、言語などの要因により、中国語で書かれた優れたディープラーニングの教科書は少ないです。 以前、アマゾンのチーフサイエンティストである李牧氏らは、ディープラーニングの入門チュートリアル本である「Hands-On Deep Learning」というディープラーニングに関する中国語の本を電子形式でGitHubでオープンソース化していた。その英語版はカリフォルニア大学バークレー校の「ディープラーニング入門(STAT 157)」コースで採用され、Li Muらも2019年にディープラーニングコースを教える際にこのチュートリアルを使用しました。
現在、このプロジェクトはGitHubで11,000以上のスターを獲得しており、電子書籍の中国語版は紙版としてもリリースされています。しかし、この本は素晴らしいのですが、読者の中には Gluon を使用してコードを記述することに慣れていない人もいます。結局のところ、ほとんどのオープンソース プロジェクトは TF または PyTorch で記述されています。これで、本のコンテンツと PyTorch フレームワークを直接組み合わせて、DL をより深く理解できるようになりました。 プロジェクトはどうですか? プロジェクト作成者によると、リポジトリには主に code と docs の 2 つのフォルダーが含まれています。 code フォルダーには、各章の関連する Jupyter Notebook コード (PyTorch ベース) が含まれています。docs フォルダーには、同じく PyTorch ベースのマークダウン形式の書籍「Hands-On Deep Learning」の関連コンテンツが含まれています。 元の本では MXNet フレームワークを使用しているため、ドキュメントの内容は元の本と若干異なる場合がありますが、全体的な内容は同じです。以下は、docs ディレクトリ内のドキュメントです。合計 10 章が含まれています。コンテンツの大部分、つまり第 1 章から第 8 章と第 10 章はすでに完成しています。第 9 章のコンピューター ビジョンのみがまだ完成していません。 実際、新しいプロジェクトのコンテンツ構造と構成は元の本と同じです。上記のドキュメントディレクトリは、基礎知識(第 1 章〜第 3 章)、最新のディープラーニング技術(第 4 章〜第 6 章)、コンピューティングのパフォーマンスとアプリケーション(第 7 章〜第 10 章)の 3 つの部分に分けることができます。以下は、本書の各章のトピックと依存関係です。矢印は、前の章が次の章の理解に役立つことを示しています。 内容に加えて、もう一つの部分は実践的なコードです。本書に付属するコードは基本的に PyTorch に変換されています。元の本と同様に、これも Jupyter Notebook で書かれており、コードとテキストの説明がよりわかりやすく表示されます。 GitHub は Jupyter Notebook をかなりゆっくりと読み込むため、表示するにはローカルにダウンロードするのが最適です。 最後に、「Hands-On Deep Learning」も PyTorch と非常に相性が良く、機械学習やディープラーニングに関する背景知識は必要なく、基本的な数学と Python プログラミングを理解するだけで済みます。 MXNet から PyTorch へ これは直感的ではないと思われるかもしれませんので、2 つの例を通じて、「Deep Learning with Hands on」という本の元のコードと PyTorch バージョンの違いを見てみましょう。リカレントニューラルネットワークを使用して言語モデルを構築するためのコードを抽出すると、元の Gluon と新しい PyTorch バージョンの違いがわかります。 以下は、RNNモデリング言語モデルを使用した原書のコードの一部です(原書6.5章)。主にモデル定義部分を抜粋しました。 上記は、対応する PyTorch コードに書き直すことができます。スタイルは非常に簡潔ですが、まだいくつかの違いがあります。 |
2021年に世界を爆発的に盛り上げたメタバースは、2022年に入っても冷める気配がなく、今も多くの...
現在、NVIDIA は GPU の優位性の座にしっかりと座っています。 ChatGPT の誕生により...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
最近、「科学は戦略だ」というネットユーザーが、近年いくつかの海外の主要メディアや調査機関がまとめたグ...
ヘルスケア分野への人工知能 (AI) の導入は、今日の国際医療における最も先進的な取り組みの 1 つ...
Google は最近、検索ページの新しい機能である Google ナレッジグラフをリリースしました。...
「合成感情」は人工知能の発展を妨げるのか?私たちは他の人とコミュニケーションをとるとき、通常は直接...
通常、人間が機械を作るのは、達成するのが難しいタスクを人間が完了するのを助けるためだけです。自然災害...
肯定的ですか? 否定的ですか? 中立的ですか? Stanford CoreNLP コンポーネントと数...
クラウドプロバイダーのサービスの需要は2024年まで増加すると予測しています。また、 AI生成技術と...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
オープンソース AI アルゴリズム 新しいスーパーピクセル サンプリング、ネットワーク ディープ フ...