建設業界がテクノロジーの導入において他の業界に遅れをとっているのは周知の事実です。 2018年の米国の建設支出総額は1兆3000億ドルを超えたにもかかわらず、業界は一貫して新しい技術を導入できていない。なぜでしょうか? 利益率は低く、労働者はかつてないほど忙しく、高齢化して技術的に不利な労働力は競争に翻弄されています。 業界は適応しなければなりません。建設現場では労働力と生産性に関して大きな問題があります。ミレニアル世代とZ世代は肉体労働には興味がなく、代わりに専門職や労働力の少ない業界に魅力を感じています。テクノロジーの導入不足も、若い世代にとってこの業界の魅力を低下させています。一方、建設業界の生産性(労働者一人当たりの生産量で測定)は横ばいとなっている一方、製造業など他の業界の生産性は過去数年間で大幅に増加しています。 これらの問題は、AI に最適な使用例のように思えます。建設技術系スタートアップ企業のシードステージ投資家として、私と私の同僚は、建設業界のこれらの問題(およびその他の問題)を解決する技術革新について独自の洞察を持っています。多くのスタートアップ企業は AI を活用していると主張しており、今ではすべてのスタートアップ企業の売り込みでは AI、機械学習、またはその他の関連する流行語に言及しなければならないというのが暗黙のルールのようです。 「これらのスタートアップが直面している大きな問題はデータ不足です。ほぼすべてのAIソリューションは、トレーニングのために大量の参照データを必要とします。」 しかし、AI は新しいものではなく、何十年にもわたって集中的に研究されてきました。 1950 年、アラン・チューリングは、現在では有名な論文を書きました。その論文は、後にチューリング テストとして知られるようになるテストを記述したものです。このテストは、今日でも、機械が人間のような思考を示せるかどうかを判断するための基準となっています。しかし、チューリングが論文を発表してから 69 年経った現在でも、チューリングテストに合格したコンピュータは存在しません。では、なぜ AI が建設テクノロジーの最新の流行語となっているのでしょうか? コンピューティング能力の飛躍的な成長と、毎日生成される推定 250 京バイトのデータをコスト効率よく保存する能力が相まって、コンピューティングは、正確な結果を提供するためのアルゴリズムを効果的に開発できるレベルに到達しました。 しかし残念なことに、コンピューティング能力とストレージ能力の向上を活用して紛れもなく革新的なテクノロジーを生み出すことができた一方で、コンピューティング分野は AI の本来のビジョンに向けて比較的ほとんど進歩していないというのが現実です。 それでも、今日の AI を活用して、建設業界がより高い生産性とより低いコストの要求を満たし、その他の困難な課題を解決するのを支援している革新的なスタートアップ企業が数多く存在します。これらのスタートアップが直面している大きな問題は、データ不足です。ほぼすべての AI ソリューションでは、トレーニングに大量の参照データが必要です。トレーニング データがなければ、これらのソリューションは学術的には興味深いものですが、広範囲にわたる人間の監督なしに現実世界のプロジェクトで役立つほどの精度は備えていません。建設業界はテクノロジーの導入が遅れていることが判明しているため、必要な履歴データが存在しないことがよくあります。より大規模で、より技術に精通した企業では、外部の関係者と共有することに消極的なデータセットを保有している場合があります。新しいテクノロジーの採用が増えるにつれてデータの可用性は高まりますが、全体的なデータ不足は、今日および近い将来、建設テクノロジーのスタートアップにとって大きな障害であり続けるでしょう。 最近、ベンチャーキャピタルがこの分野に注目しており、実際に防御技術ソリューションを開発している企業の数は増加するはずです。投資の増加は、より多くの革新的な才能を市場に引き付け、新興企業がより速く規模を拡大できるようにし、それによって大規模な建設プロジェクトに価値をもたらすことに大いに役立ちます。それでも、まだ道のりは長く、大々的な宣伝にもかかわらず、建設技術における AI はまだ表面をかすめた程度にしか過ぎません。 |
<<: テスラは、Dojo スーパーコンピューターの秘密を盗み、偽のコンピューターを使用して検査を欺いたとして元エンジニアを訴える
>>: MITチームの新しいテストはAIの推論と人間の思考を比較する
[[188225]] arXiv.org は、物理学、数学、コンピューターサイエンス、生物学の論文の...
人工知能(AI)は私たちが想像していたものではありません。未来だけに存在する概念で、世界を変えること...
年末には給与に関する議論が再び盛り上がる。昨日、馬化騰氏は抽選で従業員に30万元相当のテンセント株1...
「大きなモデルがベンチマークによって台無しにされないようにしてください。」これは、中国人民大学情報学...
COVID-19パンデミックは、医学的発見のスピードの重要性だけでなく、その加速を支援するデータサイ...
[[388433]]伝統的な哲学的観点では、「自由意志」は人間だけが持つ特別な能力であり、この能力...
[[187072]]人間同士の交流はどうなったのでしょうか? 最新のテクノロジーの流行を真剣に受け...
2020年末、チューリング賞受賞者のジュディア・パール氏、機械学習の専門家ペドロ・ドミンゴス氏、量子...
IBM は最近、NASA と提携して、炭素排出量の追跡を改善し、気候変動の影響を監視するための新しい...
コンピューティング能力は、デジタル技術の継続的な発展とデジタル経済時代の中核的な生産性にとって重要な...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
近年、セキュア アクセス サービス エッジ (SASE) テクノロジーは急速に発展し、産業界で広く使...