IBMとNASAが炭素排出量追跡のためのオープンソースAIモデルを発表

IBMとNASAが炭素排出量追跡のためのオープンソースAIモデルを発表

IBM は最近、NASA と提携して、炭素排出量の追跡を改善し、気候変動の影響を監視するための新しい地理空間ベースの AI モデルを作成し、衛星画像データの分析を容易にして、よりリアルタイムの情報を提供できるようにしました。オープンソースモデルは「Hugging Face」プラットフォーム上でリリースされました。

IBMは、地理空間基盤モデルがIBM watsonx.aiプラットフォーム・エンタープライズ・テクノロジー上に構築され、NASAのHarmonized Landsat Sentinel-2(HLS)衛星によって撮影された1年間の画像に基づいてトレーニングされていると発表しました。この基本モデルは、微調整することで、森林破壊の追跡、作物の収穫量の予測、温室効果ガスの検出と監視などのタスクに再利用できます。

NASAとIBMは、米国全土の山火事によって残された傷跡を使って訓練された、微調整されたモデルを公開した。 IBM によれば、このモデルは、事前トレーニング済みの基本モデルを基盤としているため、現在の最先端モデルよりも 75% 少ないラベル付きデータで分析を実行できるという。これにより、山火事の追跡と予測が大幅に改善され、モデル自体もより効率的に実行できるようになります。

IBM と NASA の研究者もクラーク大学と協力し、オープンソース モデルをさらに改良して、時系列セグメンテーションや類似性研究など、より幅広いアプリケーションに適したものにしようとしていると報じられています。

企業や気候科学者が直面している最大の問題の 1 つは、ラベル付けされたデータやアクセス可能な形式のデータが不足していることです。マイクロソフトとタタ・コンサルタンシー・サービスが今年初めに発表した調査によると、企業の80%が自社の事業における炭素排出量の目標を開示していないことが判明した。これは、サプライチェーン全体と世界的な傾向に関するデータが不足していることが一因です。 IBM は、AI がこのプロセスを簡素化できると考えています。

この基本モデルはラベルなしデータの大規模なデータセットでトレーニングされていますが、特定のユースケースに合わせて微調整し、ラベル付きデータを使用して展開することもできます。これは、IBM が公開した地理空間モデルを、企業からの情報や特定の科学的目的のデータに基づいて再利用し、分析を改善できることを意味します。

このモデルアプリケーションは、開発者がAIモデルを自由に共有できるHugging Faceプラットフォームでリリースされているが、商用バージョンも今年後半にwatsonx.aiでリリースされる予定で、企業がこれを使用して炭素排出量の追跡やネットゼロの目標を達成しやすくなる。

「NASA​​の地球衛星データのリポジトリと組み合わせた柔軟で再利用可能なAIシステムの基礎モデルを作成し、それをHugging Faceで利用できるようにすることで、コラボレーションの力を活用して、地球を保護するためのより迅速かつ効果的なソリューションを実装できるようになります」とIBM AIリサーチの副社長、スリラム・ラガヴァンは述べています。

Hugging Face の製品および成長担当責任者である Jeff Boudier 氏は、次のように述べています。「AI は依然として科学主導の分野であり、科学は情報の共有とコラボレーションを通じてのみ進歩することができます。そのため、オープンソース AI とモデルおよびデータセットのオープンリリースは、AI の継続的な進歩にとって非常に重要であり、より多くの人がこのテクノロジーの恩恵を受けることができます。」

「この基礎モデルは、観測データの分析方法を変える可能性を秘めています」とNASAの最高科学データ責任者ケビン・マーフィー氏は語った。「このモデルをオープンソースとして世界に公開することで、その影響を拡大したいと考えています。」

<<:  「ブラック」AI | 新たなAIサイバー攻撃のトップ10をチェック

>>: 

ブログ    

推薦する

ビジネスオートメーション、斗山の市場成功の鍵

ますます激化する競争の中で、どのように効率的に生産するかと問われれば、答えは自動化の助けを借りること...

人工知能が未来の学校を再構築し、教育問題の解決に貢献

スティーブ・ジョブズはかつて、世間では「スティーブ・ジョブズの質問」と呼ばれている、と発言しました。...

過剰に防御的?モスクワのバス運転手は中国人乗客の身元を手動で確認し、顔認識システムの使用も許可されている。

最近、モスクワのバス運転手たちは少々パニックになっている。チャットグループでは、「バスの中でアジア人...

2019 年に人工知能がハイパフォーマンス コンピューティングに及ぼす 10 の影響

[[262566]]今日では、人工知能を使用するワークロードが普及しつつあり、その一部は世界最速のコ...

オープンソースモデル「幻覚」はより深刻です。これは3段階の幻覚検出キットです

大規模モデルには、幻覚を生成するという致命的な問題が長い間存在していました。データセットの複雑さによ...

優れたオープンソース RPA フレームワーク 5 つ

ここ2年間、RPA+AI(インテリジェント自動化プロセス)が頻繁に言及されています。企業/機関のデジ...

人工知能が普及しつつある今、将来はロボットの時代になるのでしょうか?

今は特に人工知能が普及していますが、将来はロボットの時代になることは絶対にありません。なぜなら、機械...

67トピック、11528の質問、新しい中国の大規模モデルマルチタスクベンチマークCMMLUがリリースされました

MBZUAI、上海交通大学、Microsoft Research Asia は協力して、包括的な中国...

AI専門家の李牧氏の「5年間の仕事の反省」が人気に、ネットユーザー「また感動した」

[[401713]]この記事はAI新メディアQuantum Bit(公開アカウントID:QbitA...

金属の巨人からディープラーニングまで、人工知能の(ごく)短い歴史

[[202011]]クレタ島を海賊や侵略者から守るために、人々は巨大な青銅の戦士タロスを創造しました...

トリガーフリーのバックドアがAIモデルを欺くことに成功し、敵対的機械学習に新たな方向性を与える

過去数年間、研究者たちは人工知能システムの安全性にますます関心を寄せてきました。 AI 機能のサブセ...

...

AI に「大きな力と小さな心」を与える - ユニバーサル CNN アクセラレーション設計

[[207759]]導入FPGA ベースの汎用 CNN アクセラレーション設計により、FPGA 開発...