IBMとNASAが炭素排出量追跡のためのオープンソースAIモデルを発表

IBMとNASAが炭素排出量追跡のためのオープンソースAIモデルを発表

IBM は最近、NASA と提携して、炭素排出量の追跡を改善し、気候変動の影響を監視するための新しい地理空間ベースの AI モデルを作成し、衛星画像データの分析を容易にして、よりリアルタイムの情報を提供できるようにしました。オープンソースモデルは「Hugging Face」プラットフォーム上でリリースされました。

IBMは、地理空間基盤モデルがIBM watsonx.aiプラットフォーム・エンタープライズ・テクノロジー上に構築され、NASAのHarmonized Landsat Sentinel-2(HLS)衛星によって撮影された1年間の画像に基づいてトレーニングされていると発表しました。この基本モデルは、微調整することで、森林破壊の追跡、作物の収穫量の予測、温室効果ガスの検出と監視などのタスクに再利用できます。

NASAとIBMは、米国全土の山火事によって残された傷跡を使って訓練された、微調整されたモデルを公開した。 IBM によれば、このモデルは、事前トレーニング済みの基本モデルを基盤としているため、現在の最先端モデルよりも 75% 少ないラベル付きデータで分析を実行できるという。これにより、山火事の追跡と予測が大幅に改善され、モデル自体もより効率的に実行できるようになります。

IBM と NASA の研究者もクラーク大学と協力し、オープンソース モデルをさらに改良して、時系列セグメンテーションや類似性研究など、より幅広いアプリケーションに適したものにしようとしていると報じられています。

企業や気候科学者が直面している最大の問題の 1 つは、ラベル付けされたデータやアクセス可能な形式のデータが不足していることです。マイクロソフトとタタ・コンサルタンシー・サービスが今年初めに発表した調査によると、企業の80%が自社の事業における炭素排出量の目標を開示していないことが判明した。これは、サプライチェーン全体と世界的な傾向に関するデータが不足していることが一因です。 IBM は、AI がこのプロセスを簡素化できると考えています。

この基本モデルはラベルなしデータの大規模なデータセットでトレーニングされていますが、特定のユースケースに合わせて微調整し、ラベル付きデータを使用して展開することもできます。これは、IBM が公開した地理空間モデルを、企業からの情報や特定の科学的目的のデータに基づいて再利用し、分析を改善できることを意味します。

このモデルアプリケーションは、開発者がAIモデルを自由に共有できるHugging Faceプラットフォームでリリースされているが、商用バージョンも今年後半にwatsonx.aiでリリースされる予定で、企業がこれを使用して炭素排出量の追跡やネットゼロの目標を達成しやすくなる。

「NASA​​の地球衛星データのリポジトリと組み合わせた柔軟で再利用可能なAIシステムの基礎モデルを作成し、それをHugging Faceで利用できるようにすることで、コラボレーションの力を活用して、地球を保護するためのより迅速かつ効果的なソリューションを実装できるようになります」とIBM AIリサーチの副社長、スリラム・ラガヴァンは述べています。

Hugging Face の製品および成長担当責任者である Jeff Boudier 氏は、次のように述べています。「AI は依然として科学主導の分野であり、科学は情報の共有とコラボレーションを通じてのみ進歩することができます。そのため、オープンソース AI とモデルおよびデータセットのオープンリリースは、AI の継続的な進歩にとって非常に重要であり、より多くの人がこのテクノロジーの恩恵を受けることができます。」

「この基礎モデルは、観測データの分析方法を変える可能性を秘めています」とNASAの最高科学データ責任者ケビン・マーフィー氏は語った。「このモデルをオープンソースとして世界に公開することで、その影響を拡大したいと考えています。」

<<:  「ブラック」AI | 新たなAIサイバー攻撃のトップ10をチェック

>>: 

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

ロボットもこのように遊べるのでしょうか?自分の目で確認したら、これが私の欲しいロボットだ!

「タイムレイダース」を覚えていますか? 1つは1999年、もう1つは2018年のもので、わずか19年...

3つの勾配降下法アルゴリズム(BGD、SGD、MBGD)の違い

序文ネットワークをトレーニングするときに、batch_size を設定することがよくあります。この ...

MITの新しい研究によると、機械学習ではフェイクニュースを検知できない

MITの研究者らが発表した2つの新しい論文は、現在の機械学習モデルがフェイクニュース報道を区別する能...

目から涙が溢れてきました!ビクーニャのデジタルツインは10年前の自分を再現し、10年間の対話は数え切れないほどの人々に影響を与えた

Reddit のネットユーザーが何か新しいことをやっている。彼は、自身のオンラインフットプリントデー...

Python が Java や C/C++ に勝って機械学習に最適な言語である理由!

Python は、1989 年にオランダ人の Guido van Rossum によって発明され、...

...

LLM にとってベクター データベースが重要なのはなぜですか?

翻訳者 |ブガッティレビュー | Chonglou Twitter 、 LinkedIn 、またはニ...

人工知能はますます私たちに近づいている

科学者たちは、歌詞付きの歌を聞くと読書の妨げになりやすいのと同じように、音声信号とテキスト信号が脳に...

2019年に人工知能をマスターするには?世界のAI専門家が答えを教えます

[[265422]]人工知能はビジネスを変えています。自然言語処理やインテリジェント音声からモノのイ...

私の友人はソーシャルメディアのアルゴリズムの推奨に「誘惑」され、過激なグループに参加しました

[[380723]]ビッグデータダイジェスト制作著者: カレブソーシャル メディアにおけるアルゴリズ...

人工知能は大腸がんを診断できる:精度は86%にも達する

AIは心臓病の予測やアルツハイマー病の検出など、医療分野で幅広い応用が期待されています。新たな研究に...

この日本のAIは話題になっています: スケッチを2Dの妻にリアルタイムで変換でき、512の調整可能なパラメータがあります

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

PS 2021 では、さまざまな新しい AI テクノロジーが導入されます。 Meitu Xiuxiuよりも使いやすい

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

サプライチェーン管理においてAIがすでに優れた成果を上げている分野

サプライ チェーンは、製品の設計から調達、製造、流通、配送、顧客サービスまで、さまざまなアクションを...

...