MITチームの新しいテストはAIの推論と人間の思考を比較する

MITチームの新しいテストはAIの推論と人間の思考を比較する

AI が洞察を導き出し、意思決定を行う方法は謎に包まれていることが多く、機械学習の信頼性について懸念が生じています。現在、新たな研究で、研究者らは、人工知能ソフトウェアの推論が人間の推論とどの程度一致しているかを比較し、その動作を迅速に分析するための新たな方法を明らかにした。

機械学習が現実世界でますます使用されるようになるにつれて、機械学習がどのように結論に達するのか、そしてそれが正しいかどうかを理解することが重要になります。たとえば、AI プログラムは皮膚病変が癌であると正確に予測しているように見えるかもしれませんが、臨床画像のコンテキストでは無関係な特徴に焦点を当てて予測している可能性があります。

「機械学習モデルは理解するのが非常に難しいことで有名です」と、MITのコンピューターサイエンス研究者で、AIの信頼性に関する新しい研究の主執筆者であるアンジー・ボガスト氏は言う。「モデルが何を決定したかを知るのは簡単ですが、モデルがなぜその決定を下したかを知るのは難しいのです。」

文献リンク: http://shared-interest.csail.mit.edu/

AI の推論を理解するための一般的な戦略は、プログラムが決定を下すために焦点を当てるデータ (画像や文章など) の特徴を調べることです。ただし、このようないわゆる顕著性手法では、通常、一度に 1 つの決定に対する洞察しか生成できず、各決定を手動で検査する必要があります。 AI ソフトウェアは通常、何百万ものデータ インスタンスを使用してトレーニングされるため、人間が十分な決定を分析して正しい動作または間違った動作のパターンを識別することはほぼ不可能です。

「機械学習モデルを調査および理解するためのツールを人間のユーザーに提供することは、機械学習モデルを現実世界に安全に展開するために不可欠です。」—アンジー・ボガスト

現在、MITとIBMリサーチの科学者たちは、AIの決定に対する説明を収集して調査する方法を考案し、AIの行動を迅速に分析できるようにした。 「Shared Interest」と呼ばれるこの新しい技術は、AI の決定の顕著性分析を人間が注釈を付けたデータベースと比較します。

たとえば、画像認識プログラムは写真を犬の写真として分類し、顕著性アプローチでは、プログラムが決定を下すために犬の頭と体のピクセルを強調表示したことを示す場合があります。対照的に、共通の関心に基づくアプローチでは、これらの顕著性手法の結果を、写真のどの部分が犬の一部であるかを人々が注釈付けした画像のデータベースと比較する可能性があります。

これらの比較に基づいて、共通関心アプローチでは、AI の決定と人間の推論の一貫性を計算し、8 ​​つのパターンのいずれかに分類する必要があります。一方では、プログラムが正しい予測を行い、人間と同じようにデータ内の同じ特徴を強調することで、AI が完全に人間のようなものであることが示されるかもしれません。一方、AIは完全に気を散らされ、誤った予測を行い、人間が強調した特徴を何も強調しませんでした。

AI の決定が陥る可能性のあるその他のパタ​​ーンは、機械学習モデルがデータの詳細を正しくまたは誤って解釈する方法を強調します。たとえば、共通の関心によって、AI は人間のように車両全体を識別するのではなく、タイヤなどトラクターの一部分だけに基づいて画像内のトラクターを正しく識別できることや、写真にスノーモービルが写っている場合にのみ AI が画像内のスノーモービルのヘルメットを識別できることが発見されるかもしれません。

実験では、共通の関心事は AI プログラムがどのように機能し、信頼できるかどうかを明らかにするのに役立ちます。たとえば、Shared Interest は、皮膚科医が皮膚病変の写真から癌の診断に関するプログラムの正しい予測と誤った予測の例をすぐに確認するのに役立ちます。結局、皮膚科医は、実際の病変ではなく無関係な詳細に基づいて予測をしすぎたため、プログラムを信頼できないと判断しました。

別の実験では、機械学習の研究者が Shared Interest を使用して、BeerAdvocate データセットに適用した顕著性手法をテストし、従来の手動の方法に必要な時間のほんの一部で、何千もの正しい決定と間違った決定を分析することができました。共通の関心は、顕著性手法が一般的にうまく機能することを示すのに役立ちますが、レビュー内の特定の単語を過大評価して誤った予測につながるなど、これまで知られていなかった欠陥も明らかにします。

「機械学習モデルを調査および理解するためのツールを人間のユーザーに提供することは、機械学習モデルを現実世界で安全に展開するために重要です」とボガスト氏は述べた。

研究者らは、共通の関心は彼らが採用する顕著性手法と同じくらいしか役に立たないと警告している。 Boggust 氏は、それぞれの顕著性手法には独自の制限があり、Shared Interest はこれらの制限を継承していると指摘しています。

将来、科学者たちは、医療記録で使用される表形式のデータなど、より多くの種類のデータに共通の関心を適用したいと考えています。ボガスト氏は、もう一つの潜在的な研究分野として、AIの結果の不確実性を自動的に推定する可能性があると付け加えた。

科学者たちは共通の利益のためにソースコードを公開した。

ソースコード: https://github.com/mitvis/shared-interest

関連レポート: https://spectrum.ieee.org/-2657216063

<<:  建設技術におけるAIは潜在性があるが、まだ現実にはなっていない

>>:  周志華:「データ、アルゴリズム、計算力」は人工知能の3つの要素であり、今後は「知識」が加わる必要があります。

ブログ    
ブログ    

推薦する

ビジネスに大きな影響を与える 5 つの AI テクノロジー

企業は、画像認識、音声認識、チャットボット、自然言語生成、感情分析がビジネスの運営方法にどのような変...

ああはは、それだ!人気の機械学習アルゴリズムの 4 つの「なるほど!」という瞬間

ほとんどの人は 2 つのグループに分かれます。これらの機械学習アルゴリズムが理解できません。アルゴリ...

5 年以内に、8,000 万の仕事が機械に置き換えられるでしょう。インダストリアル インターネットは治療薬でしょうか、それとも毒でしょうか?

時代の発展は常に要求と矛盾の中で発展しています。あらゆる産業革命は発展の力をもたらすだけでなく、大き...

年末総括|2020年日本におけるAI(ロボティクス)分野の主なニュースを振り返る

在庫がなければ大晦日もありません。 2020年に日本のAI・ロボティクス分野で起こった出来事をいくつ...

医療における人工知能: COVID-Net プラットフォームを使用してコロナウイルスを診断する方法

COVID-NetとオープンソースのAIベースのプラットフォームは、コロナウイルスの発生によって引き...

投票の未来: AI、ブロックチェーン、生体認証

投票攻撃は止まらない2016年の米国大統領選挙は紆余曲折を経て、最終的にトランプ氏が米国大統領に選出...

ディープラーニングモデルの圧縮と加速モデル推論

導入機械学習モデルを本番環境にデプロイする場合、モデルのプロトタイプ作成フェーズでは考慮されていなか...

ウルトラマンの新技に開発者激怒! ChatGPTプラグインは放棄され、作者がGPTに目を向けたことを示唆している。

ウルトラマンの新たな動きが多くの開発者を怒らせた。これらの開発者は、プラグインの開発許可を待つのでは...

AIの使用後、機械は人間の皮膚に匹敵する触覚を持つ丨科学サブジャーナル

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

Googleの上級研究員ネイチャーが記事を公開: 機械学習の3つの大きな「落とし穴」を避ける

アルゴリズム分析は科学研究の重要な方法となっている。生物学者、高エネルギー物理学者、病理学者など、多...

...

AI に物語を伝える: シーンを想像するように教えるにはどうすればよいでしょうか?

[[282830]]視覚的な想像力は人間が生まれながらに持っているものです。AI は同様の能力を持...

自動運転事故を回避するために、CV 分野では物理的な攻撃をどのように検出できるでしょうか?

敵対的攻撃の概念は、Goodfellowら[6]によって初めて提唱されました。近年、この問題はますま...

人工知能が「人工知能」にならないようにするための鍵は、まだ人間の脳にあるかもしれない

ペンシルベニア州立大学の研究チームによると、脳内のアストロサイトと呼ばれる細胞の機能を解明し、それを...