清華大学がサッカーAIを開発:初めて10人の選手を同時にコントロールして試合を完了し、勝率は94.4%

清華大学がサッカーAIを開発:初めて10人の選手を同時にコントロールして試合を完了し、勝率は94.4%

[[434349]]

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

「4番の選手はチームメイトの協力を得て、素早くディフェンスを突破し、まっすぐに突進してシュートし、ゴールに入った!」

みなさん、こんにちは。今ご覧いただいているのは、Google AIサッカーの試合の様子です。フィールド上で黄色いジャージを着ている選手たちは、清華大学のAI選手たちです。

今年の清華大学AIチームは並外れている。厳しいトレーニングを経て、彼らは優れた個人能力を持つスター選手を擁しているだけでなく、世界で最も強くて最も緊密なチームワークも備えている

彼は無敵であり、多くの国際大会で優勝した。

「ああ、今度は7番がチームメイトからのアシストを受けて最後のシュートを決め、ボールがまたゴールに入った!」

話を元に戻すと、上記は実は清華大学がフットボールゲーム「 TiKick」で作成した強力なマルチエージェント強化学習 AI です。

複数の国際大会で優勝したことは、TiKick がシングルエージェント制御とマルチエージェント制御の両方でSOTAパフォーマンスを達成したことを意味し、サッカーの試合全体を完了するために10 人の選手を同時に制御することも初めて達成しました

この強力な AI チームはどのように訓練されたのでしょうか?

シングルエージェント戦略から進化したマルチエージェントサッカーAI

その前に、トレーニングに使用した強化学習環境である、このサッカー ゲーム、 Google Research Football (GRF) について簡単に見てみましょう。

これは 2019 年に Google によってリリースされたもので、ゲームのすべての主要なルールをサポートする物理ベースの 3D サッカー シミュレーションを提供し、インテリジェント エージェントによって制御される 1 人以上のサッカー選手が、相手チームの組み込み AI と対戦します。

3,000 ステップで構成されるゲームの前半と後半では、インテリジェント エージェントは、ゴールを決めるために、移動、パス、シュート、ドリブル、タックル、スプリントなどの 19 のアクションについて継続的に決定を下す必要があります。

このようなサッカーの試合環境で強化学習を実行するには、2 つの困難があります。

まず、マルチエージェント環境であるため、合計 10 人のプレーヤー (ゴールキーパーを除く) が操作可能であり、アルゴリズムはこのような巨大なアクション空間で適切なアクションの組み合わせを検索する必要があります。

第二に、サッカーの試合ではゴールが非常に少ないことは誰もが知っているので、アルゴリズムが環境から頻繁に報酬を得ることは難しく、トレーニングの難易度が大幅に高まります。

清華大学の今回の目標は、複数のプレイヤーを操作してゲームをクリアすることです。

彼らはまず、2020年にKaggleが開催したGRF世界選手権で最終的に優勝したWeKickチームの数万件のセルフプレイデータを観察し、オフライン強化学習の手法を用いてそこから学習しました。

このトーナメントでは、フィールド上で 1 人のプレイヤーのみを操作して対戦する必要があります。

シングルエージェントデータセットからマルチエージェント戦略を学習するにはどうすればよいでしょうか?

WeKick のシングルエージェント操作を直接学習し、各プレーヤーにコピーすることは明らかにお勧めできません。そうすると、全員がボールをつかんでゴールに急いで向かうだけになり、チームワークがまったくなくなるからです。

バックコートで活動していない選手の行動に関するデータがない場合はどうなりますか?

彼らはアクション セットに 20 番目のアクション「build-in」を追加し、このタグをすべての非アクティブなプレイヤーに付与しました (ゲーム中にプレイヤーのアクションとして build-in が選択された場合、プレイヤーは組み込みのルールに従ってアクションを実行します)。

次に、マルチエージェント行動クローニング (MABC) アルゴリズムを使用してモデルをトレーニングします。

オフライン強化学習の中心的な考え方は、データ内で高品質のアクションを見つけ、これらのアクションの学習を強化することです。

そのため、プレイヤーがアクションとして 1 つのアクションのみを実行する傾向を防ぐために、目的関数を計算するときに各ラベルに異なる重みを与える必要があります。

ここでの重量配分については、次の 2 つの点を考慮する必要があります。

1 つは、データセットからより多くの目標を持つ試合を選択し、これらの高品質のデータのみをトレーニングに使用することです。報酬がより集中的であるため、モデルは収束を加速し、パフォーマンスを向上させることができます。

2 つ目は、すべてのアクションにスコアを付ける Critic ネットワークをトレーニングし、その結果を使用してアドバンテージ関数を計算し、アドバンテージ関数の値が大きいアクションに高い重みを与え、その逆も同様に行うことです。

勾配の爆発と消失を回避するために、ここではアドバンテージ関数が適切にクリップされます。

最終的な分散トレーニング アーキテクチャは、 Learner と複数の Worker で構成されます

学習者は戦略の学習と更新を担当し、ワーカーはデータの収集を担当します。両者は gRPC を介してデータとネットワーク パラメータを交換および共有します。

ワーカーはマルチプロセスを使用して複数のゲーム環境と同時に対話したり、I/O を介してオフライン データを同期的に読み取ったりできます。

この並列実行方法により、データ収集の速度が大幅に向上し、トレーニング速度が向上します(2 日かかる他の分散トレーニング アルゴリズムと同じパフォーマンスを達成するのに 5 時間しかかかりません)。

さらに、モジュール設計により、フレームワークはコードを変更することなくワンクリックでシングルノードデバッグモードとマルチノード分散トレーニングモードを切り替えることができ、アルゴリズムの実装とトレーニングの難易度が大幅に軽減されます

勝率94.4%、1試合平均3ポイント

マルチエージェント (GRF) ゲームにおけるさまざまなアルゴリズムの比較結果では、TiKick の最終アルゴリズム (+AW) が最高の勝率 (94.4%) と最大のゴール差で最高のパフォーマンスを達成しました。

TrueSkill(機械学習による競争ゲームのランキングシステム)も1位を獲得しました。

TiKick は、内蔵 AI との対戦で勝率 94.4%、平均ネットスコア 3 ポイントを達成しました。

GRF アカデミック シナリオで TiKick をベースライン アルゴリズムと比較した結果、すべてのシナリオで TiKick が最高のパフォーマンスと最低のサンプル複雑性を達成し、大きな差があることがわかりました。

ベースラインの MAPPO と比較すると、5 つのシナリオのうち 4 つで、わずか 100 万ステップで最高スコアを達成できることがわかりました。

著者について

第一著者の Huang Shiyu 氏は清華大学の博士課程の学生であり、彼の研究対象はコンピューター ビジョン、強化学習、およびディープラーニングの交差点にあります。彼は、Huawei Noah's Ark Lab、Tencent AI、カーネギーメロン大学、SenseTimeで勤務した経験があります。

[[434352]]

共著者は清華大学の陳文澤氏です。

さらに、著者には、国立国防科学技術大学のLongfei Zhang、Tencent AI LabのLi Ziyang、Zhu Fengming、Ye Deheng、清華大学のChen Tingが含まれます。

責任著者は清華大学の朱軍教授です。

[[434353]]

論文の宛先:
https://arxiv.org/abs/2110.04507

プロジェクトアドレス:
https://github.com/TARTRL/TiKick

参考リンク:
https://zhuanlan.zhihu.com/p/421572915

<<:  クラウド、持続可能性、デジタル導入 - 2022 年のアジア太平洋地域の技術予測

>>:  人工知能と教育の統合が高等教育改革を促進

ブログ    
ブログ    

推薦する

Java プログラミング スキル - データ構造とアルゴリズム「ヒープ ソート」

[[389058]]ヒープソートの基本ヒープソートは、ヒープデータ構造を使用して設計されたソートア...

ドローンは思考によって制御される新しい方法を経験しており、その商業的展望は非常に刺激的です。

近年、ドローン業界は非常に急速な発展を遂げていると言えます。製品面では数量が大幅に増加し、種類もます...

2019年に注目すべき9つのAIトレンド

人工知能は最近テクノロジーの世界で話題になっています。それは人々の生活を変えただけでなく、さまざまな...

星が輝くとき - WOT グローバル テクノロジー イノベーション カンファレンス 2021 が間もなく開催されます

【51CTO.comオリジナル記事】​​​ 100年前、シュテファン・ツヴァイクは彼の有名な著作「星...

Ma Yiチームの新作!大規模なマルチモーダルモデルを微調整すると、「壊滅的な忘却」につながり、パフォーマンスが大幅に低下する可能性があります。

モデルの壊滅的な忘却は現在重要なホットトピックとなっており、GPT-4 でもそれを回避することはでき...

アルゴリズムの原理から推奨戦略まで

[[195281]]推奨アルゴリズムの紹介現在の推奨アルゴリズムは、一般的に次の 4 つのカテゴリに...

フランスの科学者がアリのように移動できる六脚ロボットを開発

通常、ロボットやその他のデバイスは GPS を使用して屋外で自律的に移動を行います。しかし、フランス...

AIと機械学習が克服すべき3つのハードル

[[343495]] [51CTO.com クイック翻訳] 人工知能革命はまだ初期段階ですが、人工知...

インテリジェントオートメーションが現代の職場に与える影響

インテリジェントオートメーションは現代の職場をさまざまな形で変えていますCOVID-19パンデミック...

...

...

Microsoft TaskWeaver オープンソース フレームワーク: データ分析と業界のカスタマイズを組み合わせてトップ エージェント ソリューションを作成

データ分析は現代社会において常に重要なツールであり、本質を理解し、パターンを発見し、意思決定を導くの...

あらゆる角度から監視されることへの不安:AI はプライバシー侵害にどう対抗できるか?

インテリジェント時代では、アルゴリズムと計算能力の継続的な進歩により、AI 技術が急速に発展しました...

やめる! Google は米国国防総省の 100 億ドルの契約への入札を断念しました。

[[245607]]ブルームバーグによると、アルファベットの検索子会社グーグルは、米国防総省の10...