アリババ、量子アルゴリズムとエラー訂正の探究をサポートする量子シミュレータ「Taizhang 2.0」をオープンソース化

アリババ、量子アルゴリズムとエラー訂正の探究をサポートする量子シミュレータ「Taizhang 2.0」をオープンソース化

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

アリババは12月23日、アリババクラウド量子開発プラットフォーム(ACQDP)をリリースし、自社開発の量子コンピューティングシミュレーター「Taizhang 2.0」と一連の量子応用事例をオープンソース化した。これにより、量子ハードウェアの設計、量子アルゴリズムのテスト、材料、分子発見、最適化問題、機械学習などの分野での応用の検討を行う実務者を強力にサポートします。

過去数年間の量子チップの進歩により、量子コンピューティングの実用化への道筋の不確実性がさらに減少しました。システムの規模が大きくなるにつれて、量子システムと量子アルゴリズムのテストと検証はますます困難になります。従来のシミュレーションベースのアプローチは基本的なツールですが、固有のボトルネックがあります。たとえば、現在のストレージ技術では、60 量子ビット未満の量子状態しか保存できません。 Alibaba Cloud Quantum Development Platform は、独自の分散テンソルネットワーク収縮アルゴリズムを提案し、量子回路シミュレーションの新たな方向性を切り開き、他の方法よりも大規模なシミュレーションを可能にしました。

DAMO アカデミー量子研究所は、長年にわたり量子コンピューティングの古典的シミュレーションの分野で国際的なリーダーとして活躍してきました。これまで、同社が独自に開発した「Taizhang 1.0」は、テンソルネットワーク収縮のための独自の動的分割法を提案し、量子回路シミュレーションのコストを大幅に削減し、学界や産業界で広く採用されました。オープンソースのコア量子エンジン「Taizhang 2.0」は、さらなるアルゴリズムの革新により、リソース消費を再び大幅に削減しました。

今年5月、同研究所はTaizhang 2.0を使用して、2019年にグーグルが量子超越性を主張するために使用した量子回路をシミュレートし、従来のコンピューティングでは完了するのに1万年以上かかるタスクを20日以内に圧縮しました。これは、他の最良のソリューションに比べて4桁の改善です。業界関係者は、ハードウェア リソースのさらなる最適化、特に GPU の利用効率の向上により、このアルゴリズムによってシミュレーション時間が 2 日未満に短縮されると予測しています。この一連の研究により、学術界は量子コンピューティングと古典的コンピューティングの境界について再考するようになりました。

ACQDP には、DAMO アカデミー量子研究所が開発した、数万の量子ビット (4 層、3 度) をサポートする量子近似最適化アルゴリズムのシミュレーションや、実験的なノイズ モデルに基づくエラー訂正コードのパフォーマンスのシミュレーションなどの量子アルゴリズムとアプリケーションも含まれています。これにより、理論分析だけでは解決できない実験および評価の問題を解決できます。このオープンプラットフォームに基づいて、量子コンピューティングの研究者はさまざまなシナリオに合わせてアルゴリズムをカスタマイズし、シミュレーションの効率をさらに向上させることができます。開発されたソリューションとアルゴリズムは、量子コンピュータの実現を促進し、量子コンピューティングの実用的な利点を生み出すことが期待されています。

「量子コンピューティングの実現は極めて困難です。学術界と産業界が力を合わせてボトルネックを克服し、イノベーションを加速させる必要があります」と、DAMOアカデミー量子研究所所長のShi Yaoyun氏は述べた。「オープンな研究は量子時代の到来を加速させるのに役立ち、また、量子コンピューティングサービスをできるだけ早く顧客と社会に提供するための最善の戦略でもあります。」

同氏によれば、DAMO アカデミー量子研究所は将来、より多くのオープンソースの結果とオープン研究パートナーへの無料出力を提供する予定だという。研究チームは、主流とは異なる量子ビットであるフラクソニウムの研究に重点を置いており、その最新の研究結果を近い将来に公表する予定だ。

[[359580]]

写真キャプション:DAMOアカデミー量子研究所の科学者が量子コンピューティング機器のデバッグを行っている

<<:  2021年の10のAIトレンド

>>:  人工知能とビッグデータがもたらす「新たな雇用形態」

推薦する

ヘルスケア分野で人工知能がどのように台頭しているか

人工知能は世界のほぼすべての分野に変革をもたらしたようです。ヘルスケア業界は長年にわたって大きく変化...

6 つの大きな障害に直面していますが、AI イノベーションはそれらをうまく克服できるでしょうか?

現状では、人工知能業界は消費者からの需要が大きく、投資家からの関心も高く、非常に活況を呈しているよう...

...

曹永寿:ビッグデータとAI技術がアーティストの商業的価値を測る基準を構築

[元記事は51CTO.comより]最近、エンターテインメントビッグデータアプリケーションサービスプロ...

ビジネスにおける人工知能の主な応用

[[412393]]人工知能を受け入れ、導入する企業が増えており、人工知能の応用が加速する兆しが見え...

...

...

...

データ構造とアルゴリズム、グラフをトラバースする2つの方法を理解する

[[331362]] 1 はじめにトラバーサルとは、特定のノードから開始し、特定の検索ルートに従って...

機械学習を独学で学んだら、どうやって仕事を見つければいいのでしょうか?少なくともトップ10の地雷原は避ける

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

TSMC、7nmチップの商業生産を開始

TSMCのCEOである魏哲佳氏は、TSMCの7nm生産能力の増加が予想よりも遅いという最近の憶測を否...

サイバーセキュリティにおける AI に関する 3 つの誤解

フィクションでも映画でも、人工知能は何十年にもわたって魅力的なテーマであり続けています。フィリップ・...

BAT や他の人たちは人工知能に関してどのようなことを話しましたか?

9月17日、上海の西外灘で2018年世界人工知能大会が正式に開幕した。ジャック・マー、ポニー・マー...

クラウドコンピューティングを再構築! Baidu Smart Cloudが20以上のフルスタック製品を一挙にリリース

12月20日、2023年百度クラウドインテリジェンスカンファレンスとインテリジェントコンピューティン...