ヘルスケア分野で人工知能がどのように台頭しているか

ヘルスケア分野で人工知能がどのように台頭しているか

人工知能は世界のほぼすべての分野に変革をもたらしたようです。ヘルスケア業界は長年にわたって大きく変化しており、生活がどれほど便利になったかは言葉だけでは表現できないことは言うまでもありません。 2020年は、特にヘルスケアにおいて厳しい年であり、ヘルスケア部門が柱としての役割を果たしたことを称賛しないのは無理があるでしょう。しかし、これは驚くべきことではありません。業界にはテクノロジーを活用して展開する機会が多くあり、AI がさらに多くの分野を探索する道が開かれるからです。そうは言っても、AI はヘルスケア分野で多くの発展をもたらし、生活をかつてないほどシンプルにしました。いくつか例を挙げると:

[[376634]]

COVID: 2020年、世界は劇的に変化しました。 COVID-19は人々の健康に悪影響を及ぼしただけでなく、経済にも大きな打撃を与えました。しかし、言及する価値があるのは、AI がモデリング、新しい治療法の発見、そして最も重要なワクチン開発にどのように参入しているかということだけです。

患者フローの最適化:病院を訪問する際、最悪のシナリオは、重篤な患者が ICU に入るため、手術を完了するため、または診察を受けるためだけに何時間も待ち続けることです。状況はゆっくりではありますが改善していますが、明らかに変化が見られます。 AI ベースのソフトウェア プラットフォームは、特に救急部門や患者の安全に関連する運用上の課題に対処するように設計されています。自動化されたプラットフォームは、重症患者を優先し、待ち時間を追跡し、最速の救急車ルートをマップします。

予約をする:気分にちょっとした変化があっただけでも、健康を心配するのはごく普通のことです。しかし、人々が忘れがちなのは、医師の診察を受けなければ改善しない明らかな症状とは異なり、すべての症状に診察の予約が必要というわけではないということです。ここで人工知能が登場します。患者のアンケート回答をスキャンし、仮想チェックインまたは対面診察を推奨することで時間を節約し、重症患者を優先できる AI アプリケーションがあります。

記録の維持:患者の記録を維持することが面倒な作業だった時代は終わりました。すべてが手作業で行われ、それ自体が作業がいかに退屈なものであったかを物語っています。 AIのおかげで、電子記録を維持し、必要なときにいつでもアクセスすることが可能になりました。

パーソナライズされたヘルスケア プラン: AI の助けを借りて、患者の健康履歴に基づいてパーソナライズされたヘルスケア プランを作成できるようになりました。これを手動で行う場合、かなりの時間がかかります。

予測: AI により、予測 (医療において非常に重要) がこれまでになく簡単になります。人工知能は、医薬品の設計と開発のための小分子候補の化学的および薬学的特性を予測するのに役立ちます。複雑な分子システムを数週間、あるいは数か月以内に予測できた時代は、今や過去のものとなりました。今日では、同じことを数日で実行することが可能になりました。

AIとビッグデータを組み合わせることで、財務リスクや運用リスクの予測にも役立ちます。収集されたデータはさまざまな用途に活用でき、AI を活用すれば、何がコストを押し上げるのか、誰が病気になりやすいのかなど、さまざまなことを予測できるようになります。

手術を支援するロボット:技術の進歩により、医師がロボットの助けを借りて手術を行う段階に到達しました。ロボットにはカメラ、手術器具、ロボットアームが装備されています。外科医は自分の目で拡大した 3D 映像を見ることはできませんが、これらのロボットがあれば、それはもはや現実離れした夢ではありません。

人工知能はあらゆる方法で社会のニーズを満たします。今日、私たちは、私たちの生活に人工知能の特別な応用がなければ、人生はどうなるのだろうと考えてしまいます。すべての業界が IT の恩恵を受けており、ヘルスケア業界では他の業界よりも多くの AI アプリケーションが採用されています。

<<:  知識が求められるポストディープラーニング時代において、知識グラフをいかに効率的かつ自動的に構築できるのでしょうか?

>>:  AIとクラウドコンピューティングが相互に利益をもたらし、ビジネス効率を向上させる方法

ブログ    

推薦する

李開復氏はAIバブルが年末までに崩壊すると予測、ルクン氏:それは本当だ

[[218838]] Innovation Works の創設者である Kai-Fu Lee 氏は、...

DrivingDiffusion: 最初のサラウンドワールド モデル: BEV データとシミュレーションの新しいアイデア!

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

すべてのピクセルに教師なしラベル付け! 1時間のビデオに800時間を費やす必要はもうありません

ICLR 2022の授賞式を利用して、MIT、コーネル、Google、Microsoftが新しいSO...

...

機械学習は金融自動化においてどのような役割を果たすのでしょうか?

金融やその他の分野における自動化は避けられません。しかし、金融サービスの自動化は、高いレベルの注意、...

最大の効率: AIがソースコードを読み取って教えてくれる

みなさんこんにちは、カソンです。テクノロジー系のブログをよく読む友人なら、 Webpilot [1]...

シスコの調査:企業の25%以上が社内で生成AIの禁止を実施している

シスコが実施した調査によると、データプライバシーの面で生成AIに欠点があることを理解しているにもかか...

TensorFlow 2.0「開発者プレビュー」が利用可能になりました

TensorFlow 2.0 プレビューが利用可能になりました。最近、Google AI チームのメ...

EU AI法が規則を承認

欧州連合の人工知能法(AI法)は、政策立案者が画期的な規制のルールをうまく策定したことで、法律化に向...

AIの背後にあるエンジンを理解する、テクノロジー愛好家が知っておくべき4つの機械学習アルゴリズム

人工知能は、車の運転、バーでのミキシング、戦争など、驚くべきことを行っていますが、ロボットマスクが脚...

転移学習: データが不十分な場合に深く学習する方法

[[191502]]ディープラーニング技術を使用して問題を解決する際に最もよく見られる障害は、モデル...

...

人工知能の驚くべき5つの例

AIを主流にするために、科学者や研究者はさらなる努力を重ねてきました。 [[315507]]そのため...

もう終わりですか? LK-99は単なる強磁性体であり、超伝導体ではない。北京大学などの研究論文が発表された。

これまで、韓国における常温超伝導の再現に関する多くの研究で示された重要な指標は、常温常圧の条件下で、...

...