Kindred AIは、ロボットをより賢くするために、人々にVRメガネをかけて訓練することを望んでいる

Kindred AIは、ロボットをより賢くするために、人々にVRメガネをかけて訓練することを望んでいる

(原題: Kindred AI は強化学習を利用して、人間やサルに VR メガネをかけてロボットを訓練し、より賢くすることを目指している)

著者: 江宏昌

昨年9月、Kindred AIという会社がメディアの注目を集めた。このカナダの会社は、米国特許庁に少し風変わりな特許を申請した。VRグラスやその他の外部センサーの助けを借りて、人間のオペレーターがロボットを遠隔操作できるようになり、また、その制御データを使用して機械学習アルゴリズムをトレーニングし、ロボットの動作を人間の動作に近づけ、よりスマートにすることもできるというものだ。

[[185782]]

(Kindred AI 特許出願の画像)

最近、このかなり謎めいた企業がついにMIT Technology Reviewのインタビューに応じ、この特許の背後にある技術とKindred AIの将来のロボットに関するアイデアを紹介した。

Kindred AI は、D-Wave の研究者数名によって設立されました。 Leifeng.comによると、D-Waveは最も有名な量子コンピュータ企業です。同社は2011年5月に、世界初の商用量子コンピュータとして知られるD-Wave Oneを発売しました。しかし、Kindred AIのCTOで元D-Wave社員のスザンヌ・ギルダート氏はメディアのインタビューで「量子コンピューターは確かに魅力的だが、人間に似たロボットの方がクールだ」と語った。

現在、Kindred AI は、仮想現実ゴーグルを装着してリアルタイムでアームを制御できる人間のオペレーターの支援を時々必要とすることで、従来の産業用ロボットアームが小さな物体をより速く、より安定して掴めるようにするテストを行っています。

「オペレーターは、ロボットが見て、聞いて、感じていることを見、聞いて、感じます。オペレーターが行動を起こすと、ロボットは同期して動きます」と、Kindred の共同創設者兼 CEO である Geindie Rose 氏は語ります。 「これにより、TI ではロボットが人間のように行動する方法を示すことができます。特定の場所に物を置くことは、人間がロボットを制御するための最善の方法ではありませんが、複雑な状況や予期しない状況に対処することに関しては、人間が依然として最善です。」

Kindred AI のシステムは、複数の機械学習アルゴリズムを使用し、ロボットアームが物体をつかむときなど、どれが望ましい結果をもたらすかを予測しようとします。適切なアルゴリズムがない場合、人間の助けを求めます。最も重要なのは、これらのアルゴリズムが人間の行動から学習できることです。これを実現するために、同社は強化学習アプローチを採用しました。 Leiphone.com(公式アカウント:Leiphone.com)によると、強化学習はMIT Technology Reviewが発表した「2017年の世界トップ10のブレークスルーテクノロジー」の1つに選ばれた。この手法は、一連のシナリオの下で複数のステップで適切な意思決定を行うことにより、特定の目標を達成することに重点を置いている。

ローズ氏は、このシステムは小さな衣類を拾うのに人間の2倍の速さだが、これは単独のロボットでは到底達成できない作業だと述べた。同時に、このシステムの助けにより、1 人が一度に複数のロボットを操作することもできます。 「この方法を十分長く続けられ、ロボットの背後に AI モデルがあれば、さまざまなモデルを試してどれが一番うまくいくかがわかります。人間がロボットを使ってあらゆることをできるのであれば、ロボットが人間のようになることを学べない理由はありません。」 Kindred AI の特許には、システムを通じてサルがロボットを制御できる可能性まで記載されています。

Kindred AI が追求しているアプローチには大きな可能性があるようだ。カリフォルニア大学バークレー校で機械学習とロボット工学を専門とするケン・ゴールドバーグ教授は、人間のスキルを活用することでロボットの学習が大幅に加速するだろうと述べている。ロボット手術で自身も同様のアプローチを採用しているゴールドバーグ氏は、ロボットに人間から学習させることは非常に活発な研究分野であると付け加えた。 「これはロボット工学における大きなチャンスの核心であり、人間によるデモンストレーションには大きなメリットがあると考えています。」

しかし、ロボットが人間から学習できるようにするには、多くの技術的な課題もあります。遠隔操作のヒューマノイドロボットを研究しているMITの准教授、サンベ・キム氏は、人間の操作を機械の動きにマッピングするのは非常に複雑だと言います。 「最初の課題は、硬いコネクタを皮膚に取り付けて人の動きを追跡することです。人間は内骨格動物なので、これは非常に困難です。より大きな課題は、人間が意思決定を行う際に取る手順を実際に理解することです。その多くは無意識のうちに行われます。」

しかし、Kindred AI の創設者たちは決してひるんでいない。「私たちの目標は認知を解体することです」と同社の CEO、ジョーディ・ローズ氏は言う。「すべての生物は特定の行動や動きのパターンに従っています。私たちは同じ原理に従う機械を作ろうとしているのです。」

出典: MITテクノロジーレビュー

<<:  インテルがモービルアイを買収、自動運転市場は3社間の競争の幕開けか

>>:  たった 14 ステップ: Python 機械学習をゼロからマスターする (リソース付き)

ブログ    
ブログ    
ブログ    

推薦する

ガートナーレポート: 世界のカスタマーサービスセンターが会話型 AI を導入、今年の支出は 16.2% 増加

8月1日、市場調査会社ガートナーが発表した最新のレポートによると、世界中のカスタマーサービスセンター...

AI動画の「ちらつき」問題が解決しました!動画スタイルを簡単に変更、北京大学卒業生の作品

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

自国の農業用ドローン産業の発展と成熟を促進するにはどうすればよいでしょうか?

現在、技術の継続的な進歩と産業発展の継続的な加速により、エンターテインメント、輸送、物流、救助などの...

汎用人工知能の実現に私たちはどれくらい近づいているのでしょうか?

今日、人工知能は人間が行う作業の一部をより良く行うために懸命に取り組んでいます。たとえば、AI は人...

EasyDLコンピューティング機能:10種類以上のチップをサポートし、速度が数倍速く、ワンクリックで展開可能

科学研究、金融、小売から工業、農業まで、ますます多くの業界やビジネス シナリオで、効率の向上とコスト...

...

Githubの包括的なレビュー! 2021 年の最も素晴らしい AI 論文 38 件

[[443053]] 2021年は人工知能が飛躍的に進歩し続ける年です。最近、Github で誰かが...

人工知能の先駆者であるIBM Watsonは殉教者となったのか? IBMがWatsonを売却、AIは本当に失敗したのか?

かつて、人工知能医療診断の先駆者であったIBM Watson(通称ワトソン)は、現実世界における人工...

MLタスクを効率的、迅速、正確に完了するにはどうすればよいでしょうか? 4つのAutoMLライブラリについて学びましょう

自動機械学習 (AutoML) は、データをモデル化するための機械学習モデルの構築プロセスを自動化す...

...

...

インテリジェントな会話型ロボットは顧客サービス分野で成熟を続けている

会話型 AI ベンダーの Gnani は、会話型 AI ボットが今後 2 ~ 3 年で劇的に改善され...

2021年に自動運転はどのように発展するのでしょうか?

EEtimesより翻訳2021年に自動運転車はどうなるでしょうか。自動運転業界の昨年の業績は平凡で...

AIがまだ人間を超えられない9つの分野

人工知能技術の急速な発展により、画像認識や音声認識など多くの分野で大きな進歩を遂げ、一部の分野では人...