スタートラインで勝つ: データサイエンスに必須の 5 つのスキル

スタートラインで勝つ: データサイエンスに必須の 5 つのスキル

データサイエンスの分野は競争が激しく、人々はますます多くのスキルと経験を急速に身につけています。

「R、Python、SQL、機械学習」は常にデータ サイエンティストの標準でした。しかし、この分野が成長するにつれて、これらのスキルだけでは就職市場で競争力を維持するのに十分ではなくなりました。

[[313139]]

2020年、時代の変化に対応するために、データサイエンティストも開発者スキルを磨く必要があります。

以下に、Xiaoxinが2020年のデータサイエンスに必須の5つのスキルをまとめました。ぜひ覚えておいてください〜

1. クラウドとビッグデータ

機械学習の産業化により、データ サイエンティストに対する制約がますます厳しくなり、データ エンジニアや IT 業界全体にとっても深刻な制約になりつつあります。

データ サイエンティストはモデルに必要な時間を短縮することに取り組むことができますが、IT 部門は次のような高速コンピューティング サービスを通じて貢献できます。

  • クラウド: コンピューティング リソースを AWS、Microsoft Azure、Google Cloud などの外部プロバイダーに移動すると、リモートからアクセスできる非常に高速な機械学習環境を簡単にセットアップできます。これには、データ サイエンティストが、自分のコンピューターの代わりにリモート サーバーを使用する、Windows/Mac の代わりに Linux を使用するなど、クラウド機能に関する基本的な理解を持っている必要があります。

PySparkは並列(ビッグデータ)システム用のPythonを書いています

  • BigData: IT を迅速に学習するための 2 番目の側面は、Hadoop と Spark の使用です。これらは、同時に多数のコンピューター (ワーカー ノード) でタスクを並列処理できる 2 つのツールです。コードが並列実行を可能にする必要があるため、データ サイエンティストはモデルの開発に異なるアプローチを使用する必要があります。

2. NLP、ニューラルネットワーク、ディープラーニング

最近、あるデータ サイエンティストは、NLP と画像認識はデータ サイエンスの専門分野にすぎず、誰もが習得する必要はないと主張しました。


ディープラーニングを理解する必要があります: 人間の脳の思考に基づいた機械学習

しかし、画像分類や NLP の使用例は、「通常の」ビジネスでもますます頻繁になっています。今日では、このモデルについての基本的な理解を持つことが業界の最低基準となっています。

仕事でこのようなモデルを直接適用しない場合でも、実践的なプロジェクトは簡単に見つけることができ、画像プロジェクトとテキストプロジェクトの両方で必要な手順を理解することができます。

3. アジャイル

アジャイルは、開発チームで広く使用されている作業を整理する方法です。純粋なソフトウェア開発のスキルを最初に身につけた人がデータサイエンスに携わるようになるにつれて、機械学習エンジニアの役割が生まれてきました。

[[313141]]

ポストイットとアジャイルは相性が良いようだ

データ サイエンティストや機械学習エンジニアは、既存のコード ベースの機械学習要素を継続的に改善する開発者として見られることが多くなっています。

このタイプの役割では、データ サイエンティストは、スクラム方法論に基づいたアジャイルな作業方法を理解する必要があります。さまざまな人に対してさまざまな役割を定義し、この役割の定義により継続的な改善とスムーズな実装が保証されます。

4. 工業化

データサイエンスでは、プロジェクトに対する考え方も変化しています。データ サイエンティストは、ビジネス上の質問に答えるために機械学習を継続的に使用しています。ただし、大規模なソフトウェア内のマイクロサービスなど、実稼働システム向けに開発されるデータ サイエンス プロジェクトが増えています。

AWSは最大のクラウドプロバイダーです

同時に、高度なモデルは、特にニューラル ネットワークやディープラーニングを使用する場合、CPU と RAM をますます大量に消費するようになっています。

データ サイエンティストの職務要件に関しては、モデルの精度だけでなく、実行時間やプロジェクトのその他の産業化された側面も考慮することがますます重要になっています。


マイクロソフトと同様に、Googleもクラウドサービスを提供している

5. ギットハブ

Git と Github は、さまざまなバージョンのソフトウェアを管理できる開発者向けのソフトウェアです。これらはコード ベースに加えられたすべての変更を追跡し、このタイプのソフトウェアを使用すると、複数の開発者が同じプロジェクトに同時に変更を加える場合に、コラボレーションの容易さを大幅に向上させることができます。


GitHubは良い選択です

データ サイエンティストの役割が重要になるにつれて、これらの開発ツールを扱えることが重要になります。 Git は仕事で必須のツールになりつつあり、Git を最大限に活用できるようになるには時間がかかります。一人で、または新しい同僚と一緒にいるときは Git を学ぶのは簡単ですが、Git の専門家のチームに新人が加わると、適応するのが思ったよりも難しい場合があります。

GitはGitHubが本当に必要とするスキルです

競争力を維持するには、新しいツールを使用し、新しい作業方法を受け入れる準備をする必要があります。さあ、始めましょう!

<<:  人工知能について、2020年に研究すべきトップ10のトレンド

>>:  2020年に人工知能はどのように発展するでしょうか?知っておくべき6つのトレンド

ブログ    
ブログ    
ブログ    

推薦する

人工ニューラル ネットワーク入門 - コンピューターは学習できるか?

人工ニューラル ネットワークは、人工知能 (人間の認知能力を模倣するプログラム) を作成する方法です...

物理学者は神の粒子を研究するためのアルゴリズムを開発するためにプログラマーを招待する

Wired 誌は、大型ハドロン衝突型加速器の物理学者たちが、ヒッグス粒子の特性を明らかにするプログラ...

...

12の性能項目で1位を獲得、GPT-4に最も近い中国最大級のモデルが登場!いよいよ本格的に営業開始です!

中国はいつになったら、極めて強力な一般化能力を持つさまざまな知的存在を創造し、人類の真の助手となるこ...

物理学者が67年前に予測した「悪魔」がネイチャー誌に登場:「偽の」高温超伝導体で偶然発見

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

ルカンのリーダーシップの下、自己監督に賭けるMeta AI

自己教師学習は本当に AGI への重要なステップなのでしょうか? Metaの主任AI科学者であるヤン...

PythonでQQロボットを開発する方法

序文この記事の目的はPythonでMiraiロボットを開発することですが、最初のチュートリアル、特に...

...

AIがクラウドに依存しない理由:将来AIは疎外される

[[268251]] [51CTO.com 速訳] 人工知能の発展は希望と課題に満ちている。その「不...

スタンフォード HAI が主催: 世界中で 18 の主要な AI イベント

3月18日、李飛飛氏が所長を務める人間中心人工知能研究所(HAI)は、発足からそれほど経たないうちに...

アルトマンの巨大な AI 帝国を深く探ります。核融合プラントから不死技術センターまで、その規模は驚異的です。

制御された核融合から AGI、そしてチップ業界全体の再編まで、アルトマン氏の将来の AI 展望は、も...

...

マルチエージェントシステムにおける協力:MASにおける不確実性、社会的メカニズム、強化学習の探究

マルチエージェント システム (MAS) は、共通の目標または個別の目標を達成するために相互に対話お...

2022年スタンフォードAIインデックス発表:中国がAIジャーナルの出版と引用で1位、TFオープンソースライブラリが最も人気

人工知能の分野では、スタンフォード大学が開始したAIインデックスは、AIの動向と進歩を追跡する非営利...