アルゴリズム | 再帰の深い理解、あなたは再帰を誤解しています

アルゴリズム | 再帰の深い理解、あなたは再帰を誤解しています

再帰は、プログラミングの本で説明するのが最も難しい部分である魔法のアルゴリズムです。これらの本では通常、階乗の再帰的な実装が示され、動作するが非常に遅く、スタック オーバーフローでクラッシュする可能性があるという警告が表示されます。懐疑的な人もいるが、再帰がアルゴリズムにおける強力なアイデアであるという事実には影響しない。

[[277071]]

古典的な再帰階乗を見てみましょう。

階乗.c

  1. #include <stdio.h>
  2.  
  3. int階乗( int n)
  4. {
  5. int前 = 0xdeadbeef;
  6.  
  7. (n == 0 || n == 1)の場合{
  8. 1 を返します
  9. }
  10.  
  11. 前 = 階乗(n-1);
  12. n * previousを返します
  13. }
  14.  
  15. int main( int argc)
  16. {
  17. int答え = 階乗(5);
  18. printf( "%d\n" , 回答);
  19. }

関数が自分自身を呼び出すという考え方は、最初は非常に不思議です。全体のプロセスを説明するために、次の図は、factorial(5)が呼び出され、n == 1の場合のスタックの構造を示しています。

factorial を呼び出すたびに、新しいスタック フレームが生成されます。これらのスタック フレームの作成と破棄により、再帰要素は反復部分よりも遅くなります。呼び出しが開始される前と戻る前にこれらのスタック フレームが蓄積されると、スタック領域が使い果たされ、プログラムがクラッシュする可能性があります。

しかし、こうした懸念は一般的に理論的なものである。たとえば、階乗スタック フレームはそれぞれ 16 バイトを占有します (これはスタックの配置やその他の要因によって異なる場合があります)。コンピュータで最新の x86 Linux カーネルを実行している場合、通常はデフォルトで 8 MB のスタック スペースがあるため、階乗 n は最大 512,000 を処理できます。これは非常に大きな数であり、表現するには 8,971,833 ビットを必要とするため、スタック スペースは問題になりません。小さな整数 (64 ビットであっても) は、スタック スペースがなくなる前に何万回もオーバーフローします。

CPU 使用率については後で説明しますが、今はビットやバイトから離れて、一般的な手法としての再帰について見てみましょう。私たちの階乗アルゴリズムは、整数 N、N-1、... 1 をスタックにプッシュし、それらを逆の順序で乗算することになります。プログラムの呼び出しスタックを使用してこれを行うための前提は、ヒープ上にスタックを割り当てて使用できることです。コール スタックには特別なプロパティがありますが、これは自由に使用できる別のデータ構造にすぎません。

コール スタックをデータ構造として見ると、別のことが理解できるようになります。つまり、すべての整数をそれ自体の前に追加し、それらをそれ自体で乗算することは、明らかに賢い考えではありません。 階乗を計算するには、反復プロセスを使用する方が合理的です。

伝統的な面接の質問に、迷路の中にネズミが置かれ、ネズミがチーズを見つけるのを手伝うというものがあります。ネズミは迷路の中で左または右に曲がることができると仮定します。この問題をどのようにモデル化して解決しますか?

人生におけるほとんどの問題と同様に、このげっ歯類の課題をグラフ、具体的にはノードが迷路内の位置を表すバイナリ ツリーに抽象化できます。次に、ネズミをできるだけ左に曲げ、行き止まりに達したら戻って右に曲がるようにします。次の図はマウスのパスを示しています。

各エッジ(線)は左または右に曲がることができ、マウスで選択できます。どちらかのターンがブロックされている場合、対応するエッジは存在しません。コール スタックを使用する場合でも、他のデータ構造を使用する場合でも、このプロセスは本質的に再帰的です。しかし、コールスタックの使用は非常に簡単です。

迷路.c

  1. #include <stdio.h>
  2. #include "maze.h"  
  3.  
  4. int探索(maze_t *ノード)
  5. {
  6. int見つかった = 0;
  7.  
  8. if (ノード == NULL ) {
  9. 0を返します
  10. }
  11.  
  12. if (node->hasCheese) {
  13. return 1; // チーズが見つかった
  14. }
  15.  
  16. 見つかった = explore(node-> left ) || explore(node-> right );
  17. 戻り値が見つかりました。
  18. }
  19.  
  20. int main( int argc)
  21. {
  22. int found = explore(&maze);
  23. }

maze.c:13 でチーズを見つけます。ここにスタックがあります。

ここで再帰を回避することは困難ですが、コール スタックを介して実行する必要があるわけではありません。たとえば、文字列 RRLL を使用してターンを追跡し、その文字列に基づいてマウスの次の動きを決定することができます。または、チーズ探しのステータスを記録するために他の変数を割り当てることもできます。再帰的な手順を実装していますが、独自のデータ構造を展開しています。

コールスタックがぴったり合うため、これはさらに複雑になる可能性があります。各スタック フレームには、現在のノードだけでなく、そのノードでの計算の状態も記録されます (この場合、左側のみを実行したか、右側を既に試したか)。しかし、私たちは溢れることを恐れて、良いものを諦めてしまうことがあります。それはとても愚かなことだと私は思います。

これまで見てきたように、スタックは大きく、スタック領域よりも先に他の制約が満たされることがよくあります。問題の大きさを確認し、安全に処理できるかどうかを確認することもできます。 CPU に対する恐怖は、主に、愚かな因子と、メモリのない信頼性の高い O(2n) 再帰フィボナッチという 2 つの広く見られる病理の例によって植え付けられます。これらは健全なスタック再帰アルゴリズムを表すものではありません。

実際には、スタック操作は高速です。データのオフセットは正確で、スタックはキャッシュ内にあり、コールド スタートは必要なく、ジョブを完了するための専用の命令があります。同時に、独自のヒープ割り当てデータ構造を使用すると、多くのオーバーヘッドが発生します。コールスタックの再帰よりも複雑でパフォーマンスの悪いものを書いている人がいるかもしれません。

最近の CPU は非常に優れており、通常はボトルネックにはなりません。多くの場合、シンプルさはパフォーマンスにつながります。

<<:  AIとIoTが現代の商取引と小売業を強化

>>:  顔認識のためのディープラーニングとオブジェクト検出のステップバイステップガイド

ブログ    
ブログ    

推薦する

面接の質問: Nginx の負荷分散アルゴリズムはどのように実装されていますか?なぜ動きと静止を区別する必要があるのでしょうか?

面接の質問Nginx の負荷分散アルゴリズムはどのように実装されていますか? Nginx の負荷分散...

Stack OverflowがAI搭載製品「OverflowAI」を発表

スタックオーバーフローStack Overflow は、2008 年に設立された、プログラマー向けの...

...

ビッグデータとディープラーニングは、仕事帰りの交通渋滞の回避にどのように役立つのでしょうか?

携帯電話のバスアプリでバス路線 112 の残りの停留所の数を確認するとき、バスに GPS をインスト...

世界最高の AI 教育会社はどこでしょうか?米国、中国、欧州、イスラエルが先頭を走る

GoogleがモバイルファーストではなくAIファーストを語り、テンセントがAIをあらゆるものに取り入...

張亜琴:業界にとって、ディープラーニングの黄金時代は始まったばかりだ

本日、張亜琴教授はCNCC 2020で「スマートテクノロジーのトレンド」をテーマに講演しました。デジ...

AI、エッジコンピューティング、IoT、クラウドコンピューティングが車両管理をどのように変えるのか

毎日生成されるデータの量は増加し続けています。その結果、これらの企業はこれまで以上に多くのデータを保...

...

未来を受け入れる: AIと教育テクノロジーによる教育の変革

新しいテクノロジー、特に人工知能 (AI) の急速な台頭により、教育と指導は大きな変化の瀬戸際にあり...

IBMは顔認識技術の開発を中止し、議会に書簡を送った。

IBMは、顔認識技術の影響に対する人々の懸念が高まる中、今後は顔認識関連の技術や機能を開発しないこ...

バイトダンスのGPTアカウントが突然凍結、OpenAIが不正行為を調査

バイトダンスは、この大規模モデルをめぐる世論の嵐に巻き込まれている。 The Vergeによると: ...

GitHub の機械学習プロジェクトのトップ 5。残念です!

機械学習は急速に発展しています。実用的で高度な機械学習プロジェクトを見つけたい場合、第一の選択肢は ...

深い思考 | 大規模モデルの機能の限界はどこにあるのでしょうか?

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

アルゴリズムの芸術: MySQL order by のさまざまなソートアルゴリズムの巧みな使用

[[337135]]この記事では、MySQL におけるキーワードの原則を比較的マクロな観点から見てい...