Mathematica が Big Language Model を導入しました。ネットユーザー:買う、買う、買う

Mathematica が Big Language Model を導入しました。ネットユーザー:買う、買う、買う

Mathematica Wolfram の最新バージョンでは、大規模言語モデル (LLM) が正式に導入されています。

つまり、科学計算には「話す」という動作だけが必要になったということです。

たとえば、グラフを作成したい場合は、次のように言います。

赤と緑の半円を描きます。

赤と緑の半円を描きます。

写真

これに基づいて、自然言語でさらにリクエストを行うことができます。

塗りつぶされた半円を隣り合わせにしたい。軸は不要。

塗りつぶされた半円を隣り合わせにしたいです。座標軸はありません。

写真

自然言語を使用して変更を続けます。

平らな面が垂直の直径を形成するように作ります。

これらの平らな側面が垂直の直径を形成するようにします。

写真

最後に、2 つの半円を合わせるには、次のように言います。

これらの部分を、間にスペースを入れずに同じ円にします。

2 つの部分を接続して、隙間のない円を形成します。

写真

科学計算に自然言語を使用すると非常に便利であることは容易に理解できます。

Mathematica Wolframの言葉を借りれば:

事前の知識がなくても、または Wolfram 言語を知らなくても、科学計算を簡単に行うことができます。

写真

この新機能を見たネットユーザーはこう言った。

買って、買って、買って!

写真

自動的に修正されます

別の例を使って、LLM での Mathematica の導入を体験してみましょう。

最初の 20 個の双子素数の表を作成します。

最初の 20 個の双子素数をリストした表を作成します。

同様に、自然言語による記述に基づいて、Mathematica はすぐに作業を開始します。

写真

しかし、この期間中に、Mathematica はコードが間違っていることに気づき、間違いを認めて修正し始めました。

申し訳ありませんが、最初の 50 個の素数のうち二重素数の数を過大評価していたようです。事前に定義された制限なしで最初の 20 個の双子素数を見つけるようにコードを調整してみましょう。

写真

それ自体はコードを書いていないにもかかわらず、エラーが発生したときに何が起こるかを非常にうまく説明しています。

写真

当局者らは、新たに導入されたLLMに適応するために、Wolfram言語にさまざまな新しい構造が追加されたと述べた。

たとえば、チャットノートブックでは、チャットセルとチャットブロックが設定されます。

写真

LLM の使用を容易にするために、公式には「Wolfram Prompt リポジトリ」も設置されました。

プロンプト リポジトリには、次の 2 つの主要なカテゴリが含まれます。

  • 1 つ目はパーソナライゼーションです。これは、チャットのやり取りを「スタイル設定」したり、その他の情報を提供するために使用されます。
  • 2 番目のタイプは、関数ヒントと修飾子ヒントです。

関数ヒントは、LLM にテキストの段落を要約したり、ジョークを提案したりするなど、特定の操作を実行させるためのものです (現時点では、これはあまり得意ではありません)。

修飾子ヒントは、別の人間の言語に翻訳したり、特定の長さに維持したりするなど、LLM が出力をどのように変更するかを決定するために使用されます。

写真

その他のアップデート

LLM の導入は、バージョン 13.3 のアップデートの 1 つにすぎません。

たとえば、新しく統合された「線積分」と「面積分」を使用すると、線と面上のスカラー関数とベクトル関数を積分できます。

写真

公式の言葉で言えば、この機能は数学計算にまったく新しい可能性をもたらします。

さらに、バージョン 13.3 では、さらに多くの機能と視覚化も更新されました。

写真

詳細については、以下のリンクをクリックしてください。

参考リンク:
[1] https://writings.stephenwolfram.com/2023/06/llm-tech-and-a-lot-more-version-13-3-of-wolfram-language-and-mathematica/
[2] https://twitter.com/stephen_wolfram/status/1674120239435456514
[3] https://news.ycombinator.com/item?id=36529610

<<:  ChatGPTに勝つ? OpenChat が 105.7% のパフォーマンスでスタンフォード AlpacaEval オープンソース リストのトップに

>>:  機械学習が医療に革命を起こす

ブログ    
ブログ    
ブログ    

推薦する

人工知能産業の急速な発展の背後にある4つの大きな無駄

[[258526]]過去7年間、中国のプライベートエクイティ投資市場における人工知能分野への投資額は...

...

アリババの年次技術概要: 検索における人工知能の応用と実践

[51CTO.com からのオリジナル記事] ディープラーニングに代表される人工知能は、画像、音声、...

機械学習チューナー: 機械学習を再調整する方法とタイミング

[[329534]]古代ギリシャの哲学者ヘラクレイトスはこう言いました。「唯一不変なものは変化である...

...

...

...

...

ディープラーニングを使用した DGA (ドメイン生成アルゴリズム) の検出

[[196872]] DGA (ドメイン生成アルゴリズム) は、ドメイン名のブラックリスト検出を回避...

自動運転の倫理的ジレンマを解決する: 道徳規範を数式に変換する

暴走列車が線路を走っています。5人が線路に縛られており、列車に轢かれそうになっています。この時点で、...

...

スマートヘルスケアの 6 つの主要な応用分野は何ですか?

スマートヘルスケアで使われる主なAI技術は画像とデータ分析機能ですが、その応用範囲は次の6つを含めて...

生成 AI は岐路に立っています。次の波はどこから来るのでしょうか?

生成 AI は、特にビジネスの世界でますます人気が高まっています。ウォルマートはつい最近、店舗外の従...

ニューヨーク市の AI イニシアチブを分析: そこから何を学べるか?

エリック・アダムス市長は最近、ニューヨーク市政府がAI技術の応用を推進する計画を発表した。この計画に...