人工知能が台頭しています。インテリジェントセキュリティの開発はどのように進んでいますか?

人工知能が台頭しています。インテリジェントセキュリティの開発はどのように進んでいますか?

セキュリティ業界は、人工知能の市場を長く有する業界として、人工知能の発展に対する理解がより明確で、その開発に対する需要もより切実です。人工知能は、高解像度化とネットワーク化に続く、セキュリティ業界の第3の技術革命を推進しています。

人工知能の急速な発展を背景に、セキュリティ業界は AI を中心とした新たなインテリジェントな旅に乗り出しました。この旅の中で、スマートセキュリティの開発はどのように進んでいますか?

"進捗"

エッジコンピューティングはエッジインテリジェンスの発展を推進します

エッジ コンピューティングとは、オブジェクトまたはデータのソースに近いネットワークのエッジでネットワーク、コンピューティング、ストレージ、およびアプリケーションのコア機能を統合し、アジャイル接続、リアルタイム ビジネス、データ最適化、アプリケーション インテリジェンス、セキュリティとプライバシー保護などの業界のデジタル化の主要なニーズを満たすために、近くでエッジ インテリジェント サービスを提供するオープン プラットフォームを指します。一言で言えば、エッジ コンピューティングは、データ ソースのエッジで実行されるコンピューティング プログラムとして理解できます。

技術の継続的な進歩に伴い、「エッジ インテリジェンス」という概念が登場し、モノのインターネットのあらゆるエッジ デバイスがデータの収集、分析と計算、通信、重要なインテリジェンスを行えるようにする新しいモデルを提案しています。新しいインテリジェント エッジ コンピューティングは、クラウド コンピューティングのパワーも活用し、クラウドを使用して大規模なエッジ デバイスを安全に構成、展開、管理し、デバイスの種類とシナリオに基づいてインテリジェンスを割り当てることができるため、クラウドとエッジの間でインテリジェンスが流れるようになり、両方の長所が実現されます。

エッジインテリジェンスがトレンドになっています。 Internet of Everythingの時代の到来により、コンピュータビジョン分野のフロントエンドデバイスによって生成される画像とビデオデータの量は膨大です。これらすべてをクラウドコンピューティングデータセンターに集約してインテリジェント分析を行うと、通信帯域幅の要件とリアルタイム要件に無限の圧力がかかります。これには、エッジ インテリジェンス サービスの近くでの提供と、人工知能の計算能力または推論機能をクラウドからエッジに段階的に移行することが必要であり、これにより伝送リンクへの負荷が軽減されます。

ディープラーニング構築がAI都市の発展を促進

セキュリティ業界は、人工知能技術の自然なトレーニングと応用分野として、人工知能の実用化を緊急に必要としています。近年、「都市脳」「交通脳」「警察脳」などの「脳」の出現に伴い、人工知能のディープラーニング技術と多次元知覚が融合し、AI都市のさらなる発展が促進されています。

ディープラーニングの主な研究分野は音声認識と視覚であり、ディープラーニングをさまざまな方向に応用することで、さまざまな分野でさまざまな技術革新を実現できます。大量のビデオ画像リソースを持つセキュリティ業界にとって、ディープラーニングとセキュリティの組み合わせは、画像分析、顔認識、テキスト処理など、画像とビデオの分析に比較的高い適合性を持っています。

セキュリティ業界におけるディープラーニングは、主に身体分析、車両分析、行動分析、画像分析の 4 つの領域に焦点を当てています。ディープラーニングアルゴリズムの進歩により、ターゲット認識、物体検出、シーンセグメンテーション、人物や車両の属性分析などのインテリジェント分析技術が飛躍的に進歩しました。

「邪魔」

人工知能のセキュリティには「コア」が大いに必要

セキュリティ業界では、チップはフロントエンドからバックエンドまで、送信、記録、保存まで、プロセス全体を実行していると言えます。「チップ」のないセキュリティは不完全なものになります。

セキュリティビデオ監視分野には膨大な量のデータがあり、ディープラーニングのトレーニングに十分なシナリオを提供できます。さらに、近年、インテリジェントアルゴリズムの開発は大量のビッグデータに依存しており、音声認識と視覚で重要な進歩を遂げ、反復が高速化しています。セキュリティ分野における人工知能の実装には、十分に強力なコンピューティング能力を備えた処理チップが必要ですが、チップレベルでは、実際の戦闘ニーズを完全に満たすことができる人工知能セキュリティアプリケーションチップは存在しません。

人間の介入を排除することは困難

人工知能は人間にはできないことをいくつか実現していますが、人工知能を大規模に適用する時期はまだ来ておらず、類似した物体を区別するには人間の介入が必要です。

実際の事例から、単一シーンのビデオを抽出すると、画像検索により関連画像を迅速に発見でき、これに基づいて容疑者の軌跡を発見し、最終的にターゲットをロックすることができます。しかし、専門家は、このプロセスは人工知能アルゴリズムに依存しており、人間の介入なしに行うことは困難であると率直に指摘しています。ビデオ犯罪捜査担当者の分析と判断なしには、依然として実行できません。

結論: 現在、セキュリティ業界はデータ爆発の時代を迎えています。データ量の爆発的な増加に直面し、従来のインテリジェント アルゴリズムでは、ディープ データ価値マイニングのニーズを満たすことができなくなりました。人工知能研究の深化と深化は、セキュリティ業界に想像を超える変化をもたらし、人工知能が役割を果たせる応用シナリオはますます増えています。

<<:  AIは新たな科学革命を先導している

>>:  AIは新たな科学革命を先導している

ブログ    
ブログ    

推薦する

人工知能の70年間で、研究者が最も直面したくない痛い教訓は...

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

AIは単細胞生物が脳なしで意図した方向に移動する仕組みを説明するのに役立つ

単純な生物はどのようにして特定の場所へ移動できるのか?ウィーン大学で開発された人工知能と物理モデルが...

...

AI研究所が超大規模知能モデル「Wudao 1.0」をリリース

3月20日、北京人工知能研究院は超大規模知能モデル「五道1.0」を発表した。 「五道1.0」は中国初...

CIO が AI を活用して地位を向上させる 3 つの方法

組織内の利害関係者の視点から IT の役割を理解することは、IT がどのように変革する必要があるかを...

ディープラーニングツール:スマート端末におけるTensorFlowの応用

[[204425]]序文ディープラーニングは、画像処理、音声認識、自然言語処理の分野で大きな成功を収...

Keras 対 PyTorch: どちらが「ナンバーワン」のディープラーニング フレームワークでしょうか?

「最初のディープラーニングフレームワークをどのように選択するか」は、初心者にとって常に頭痛の種でし...

...

Googleの視覚言語モデルPaLI-3がリリースされました。パラメータはわずか50億で、より小さく、より高速で、より強力です。

大規模モデルの時代では、視覚言語モデル (VLM) のパラメータは数百億、さらには数千億にまで拡大し...

...

AIドクターは正式に勤務中ですか? AIと医療の融合が爆発点に到達!

近年、医療分野における人工知能の応用が非常にホットな話題となっています。 「ニューイングランド・ジャ...

C#アルゴリズムのプログラム実装に関する面接の質問

C# アルゴリズムの面接の質問を解く方法はたくさんあります。ここでは 1 つだけ紹介します。まずは質...

自然言語処理はどのように機能しますか? NLPパイプラインの構築方法を段階的に教えます

コンピュータは構造化されたデータを理解するのが得意ですが、主に文化的習慣に基づいた人間の言語を理解す...

Google DeepMind、どのDNA変異が遺伝性疾患を引き起こすかを予測できる新しいモデルを開発

9月20日、Googleの人工知能チームDeepMindは、AlphaMissenseと呼ばれる新し...

平均して、1 秒で 1 つの高得点大学入試エッセイが生成されます。PaddlePaddle Wenxin モデルはどのようにしてこれを実現するのでしょうか?

全国的な大学入試が進行中で、百度のAI技術も「大学入試」に直面している。 6月7日、大学入試の中国語...