任意のデータセットに基づいて LLM (大規模言語モデル) ロボットを作成する

任意のデータセットに基づいて LLM (大規模言語モデル) ロボットを作成する

今日、偶然Embedchainというウェアハウスを見つけ、とても便利だと思ったので、皆さんとシェアします。倉庫の住所は以下の通りです。

埋め込みチェーン

OpenAI をベースにしていますが、独自のデータセットを追加して会話型ロボットを生成することもできます。使い方は簡単で、簡単に始めることができます。

Embedchainの紹介

Embedchain は、あらゆるデータセットに基づいて LLM (大規模言語モデル) ボットを簡単に作成できるフレームワークです。データセットの読み込み、チャンク化、埋め込みベクトルの作成、ベクトル データベースへの保存というプロセス全体を抽象化します。 .add 関数と .add_local 関数を使用して 1 つまたは複数のデータセットを追加し、.query 関数を使用して追加したデータセットから回答を見つけることができます。

あなたが偉大な人物、Naval Ravikant を尊敬していて、彼の知識を会話型ロボットに変えたいと考えているとします。彼の YouTube 動画、PDF 書籍、ブログ投稿、およびあなたが提供する質問と回答のペアを Embedchain に追加すると、Embedchain がロボットを作成します。次に例を示します。

 from embedchain import App naval_chat_bot = App() # 嵌入在线资源naval_chat_bot.add("youtube_video", "https://www.youtube.com/watch?v=3qHkcs3kG44") naval_chat_bot.add("pdf_file", "https://navalmanack.s3.amazonaws.com/Eric-Jorgenson_The-Almanack-of-Naval-Ravikant_Final.pdf") naval_chat_bot.add("web_page", "https://nav.al/feedback") naval_chat_bot.add("web_page", "https://nav.al/agi") # 嵌入本地资源naval_chat_bot.add_local("qna_pair", ("Who is Naval Ravikant?", "Naval Ravikant is an Indian-American entrepreneur and investor.")) naval_chat_bot.query("What unique capacity does Naval argue humans possess when it comes to understanding explanations or concepts?") # 答案:Naval 认为,人类在理解解释或概念方面拥有独特的能力,这是在这个物理现实中可能的最大程度。

Embedchainの使用

Embedchain の使用を開始するには、まずパッケージがインストールされていることを確認してください。まだインストールされていない場合は、pip を使用してインストールできます。

 pip install embedchain

Embedchain は OpenAI の埋め込みモデルを使用してブロックの埋め込みを作成し、ChatGPT API を LLM として使用して、関連ドキュメントへの回答を提供します。 OpenAI アカウントと API キーがあることを確認してください。 APIキーをお持ちでない場合は、このリンク[1]にアクセスして作成できます。

APIキーを取得したら、OPENAI_API_KEYという環境変数に設定します。

 import os os.environ["OPENAI_API_KEY"] = "sk-xxxx"

次に、embedchain から App クラスをインポートし、.add 関数を使用してデータセットを追加します。

 from embedchain import App naval_chat_bot = App() # 嵌入在线资源naval_chat_bot.add("youtube_video", "https://www.youtube.com/watch?v=3qHkcs3kG44") naval_chat_bot.add("pdf_file", "https://navalmanack.s3.amazonaws.com/Eric-Jorgenson_The-Almanack-of-Naval-Ravikant_Final.pdf") naval_chat_bot.add("web_page", "https://nav.al/feedback") naval_chat_bot.add("web_page", "https://nav.al/agi") # 嵌入本地资源naval_chat_bot.add_local("qna_pair", ("Who is Naval Ravikant?", "Naval Ravikant is an Indian-American entrepreneur and investor."))

スクリプトまたはアプリにアプリの他のインスタンスがある場合は、次のようにインポートを変更できます。

 from embedchain import App as EmbedChainApp # 或者from embedchain import App as ECApp

これでアプリケーションが作成されました。 .query 関数を使用すると、任意のクエリに対する回答を取得できます。

 print(naval_chat_bot.query("What unique capacity does Naval argue humans possess when it comes to understanding explanations or concepts?")) # answer: Naval argues that humans possess the unique capacity to understand explanations or concepts to the maximum extent possible in this physical reality.

サポートされている形式

以下の形式がサポートされています:

Youtubeビデオ

アプリケーションに Youtube ビデオを追加するには、データ型 (.add の最初のパラメーター) として youtube_video を使用します。例えば:

 app.add('youtube_video', 'a_valid_youtube_url_here')

PDFファイル

PDF ファイルを追加するには、データ型 pdf_file を使用します。例えば:

 app.add('pdf_file', 'a_valid_url_where_pdf_file_can_be_accessed')

パスワードで保護された PDF はサポートされていないことに注意してください。

ウェブページ

任意の Web ページを追加するには、データ型 web_page を使用します。例えば:

 app.add('web_page', 'a_valid_web_page_url')

文章

独自のテキストを指定するには、データ型テキストを使用して文字列を入力します。テキストは処理されず、非常に多様になる可能性があります。例えば:

 app.add_local('text', 'Seek wealth, not money or status. Wealth is having assets that earn while you sleep. Money is how we transfer time and wealth. Status is your place in the social hierarchy.')

注: ほとんどの場合、段落全体またはファイル全体を提供するため、例ではこれは使用されません。

<<:  Dubbo 負荷分散戦略コンシステントハッシュ

>>:  貧困が私を訓練した

ブログ    

推薦する

基本的なアルゴリズムについての簡単な説明: AVL ツリーとスプレイ ツリー (パート 3)

順序上記に引き続き、このトピックについて話し続けましょう。バランス二分木: AVL 木 (1962)...

企業におけるAIの応用は成熟段階に入ったのでしょうか?

マッキンゼーは、AI が多くの業務活動を自動化するという見通しに楽観的である一方で、あらゆる規模の自...

[強く推奨] 史上最も包括的な IT アーキテクト技術知識マップ 34 選

この記事は、著者が長年にわたり蓄積し収集してきた知識とスキルのマップです。編集者は、これを周囲の技術...

データサイエンスにおける ML+ と DL+ の時代へようこそ

企業のデジタル変革は、次々と熱狂の波をもたらしました。国際的な権威ある組織は、今後数年間の企業のデジ...

百度地図のデータ収集リンクの80%はAIベースになっており、旅行業界はインテリジェントにアップグレードされている

人工知能時代の地図データ制作はどのような変化を遂げるのでしょうか?7月3日、「Baidu Creat...

プログラマーのための上級書籍リスト: アルゴリズム

アルゴリズムの図解通常のアルゴリズムの本は、読む人を眠くさせ、理解不能で読みにくく、非常にイライラさ...

データ サイエンティストが知っておくべき 10 のディープラーニング アーキテクチャ

近年、ディープラーニングは勢いを増しており、その進歩のペースについていくことがますます困難になってき...

ユビキタス「AI+」人工知能はこのように私たちの生活を変える

人工知能(略して AI)は、コンピュータサイエンスの重要な分野として、1956 年にダートマス協会で...

人工知能と拡張現実はオンラインショッピング行動に影響を与える

[[405357]]画像ソース: https://pixabay.com/images/id-468...

Meili United のビジネスアップグレードにおける機械学習の応用

一般的に、機械学習は電子商取引の分野では、推奨、検索、広告の 3 つの主要な用途があります。今回は、...

...

新しい報告書が確認:慎重に扱わなければ、人工知能は現実版「ブラックミラー」になる

新しい報告によると、私たちは人工知能革命の瀬戸際に立っている。この革命において、私たちが作り出すテク...

...

人工知能がサービスと運用管理を改善する10の方法

ヨーロッパの多国籍通信会社は、BMC の Helix Chatbot を標準化して、全部門の 120...