任意のデータセットに基づいて LLM (大規模言語モデル) ロボットを作成する

任意のデータセットに基づいて LLM (大規模言語モデル) ロボットを作成する

今日、偶然Embedchainというウェアハウスを見つけ、とても便利だと思ったので、皆さんとシェアします。倉庫の住所は以下の通りです。

埋め込みチェーン

OpenAI をベースにしていますが、独自のデータセットを追加して会話型ロボットを生成することもできます。使い方は簡単で、簡単に始めることができます。

Embedchainの紹介

Embedchain は、あらゆるデータセットに基づいて LLM (大規模言語モデル) ボットを簡単に作成できるフレームワークです。データセットの読み込み、チャンク化、埋め込みベクトルの作成、ベクトル データベースへの保存というプロセス全体を抽象化します。 .add 関数と .add_local 関数を使用して 1 つまたは複数のデータセットを追加し、.query 関数を使用して追加したデータセットから回答を見つけることができます。

あなたが偉大な人物、Naval Ravikant を尊敬していて、彼の知識を会話型ロボットに変えたいと考えているとします。彼の YouTube 動画、PDF 書籍、ブログ投稿、およびあなたが提供する質問と回答のペアを Embedchain に追加すると、Embedchain がロボットを作成します。次に例を示します。

 from embedchain import App naval_chat_bot = App() # 嵌入在线资源naval_chat_bot.add("youtube_video", "https://www.youtube.com/watch?v=3qHkcs3kG44") naval_chat_bot.add("pdf_file", "https://navalmanack.s3.amazonaws.com/Eric-Jorgenson_The-Almanack-of-Naval-Ravikant_Final.pdf") naval_chat_bot.add("web_page", "https://nav.al/feedback") naval_chat_bot.add("web_page", "https://nav.al/agi") # 嵌入本地资源naval_chat_bot.add_local("qna_pair", ("Who is Naval Ravikant?", "Naval Ravikant is an Indian-American entrepreneur and investor.")) naval_chat_bot.query("What unique capacity does Naval argue humans possess when it comes to understanding explanations or concepts?") # 答案:Naval 认为,人类在理解解释或概念方面拥有独特的能力,这是在这个物理现实中可能的最大程度。

Embedchainの使用

Embedchain の使用を開始するには、まずパッケージがインストールされていることを確認してください。まだインストールされていない場合は、pip を使用してインストールできます。

 pip install embedchain

Embedchain は OpenAI の埋め込みモデルを使用してブロックの埋め込みを作成し、ChatGPT API を LLM として使用して、関連ドキュメントへの回答を提供します。 OpenAI アカウントと API キーがあることを確認してください。 APIキーをお持ちでない場合は、このリンク[1]にアクセスして作成できます。

APIキーを取得したら、OPENAI_API_KEYという環境変数に設定します。

 import os os.environ["OPENAI_API_KEY"] = "sk-xxxx"

次に、embedchain から App クラスをインポートし、.add 関数を使用してデータセットを追加します。

 from embedchain import App naval_chat_bot = App() # 嵌入在线资源naval_chat_bot.add("youtube_video", "https://www.youtube.com/watch?v=3qHkcs3kG44") naval_chat_bot.add("pdf_file", "https://navalmanack.s3.amazonaws.com/Eric-Jorgenson_The-Almanack-of-Naval-Ravikant_Final.pdf") naval_chat_bot.add("web_page", "https://nav.al/feedback") naval_chat_bot.add("web_page", "https://nav.al/agi") # 嵌入本地资源naval_chat_bot.add_local("qna_pair", ("Who is Naval Ravikant?", "Naval Ravikant is an Indian-American entrepreneur and investor."))

スクリプトまたはアプリにアプリの他のインスタンスがある場合は、次のようにインポートを変更できます。

 from embedchain import App as EmbedChainApp # 或者from embedchain import App as ECApp

これでアプリケーションが作成されました。 .query 関数を使用すると、任意のクエリに対する回答を取得できます。

 print(naval_chat_bot.query("What unique capacity does Naval argue humans possess when it comes to understanding explanations or concepts?")) # answer: Naval argues that humans possess the unique capacity to understand explanations or concepts to the maximum extent possible in this physical reality.

サポートされている形式

以下の形式がサポートされています:

Youtubeビデオ

アプリケーションに Youtube ビデオを追加するには、データ型 (.add の最初のパラメーター) として youtube_video を使用します。例えば:

 app.add('youtube_video', 'a_valid_youtube_url_here')

PDFファイル

PDF ファイルを追加するには、データ型 pdf_file を使用します。例えば:

 app.add('pdf_file', 'a_valid_url_where_pdf_file_can_be_accessed')

パスワードで保護された PDF はサポートされていないことに注意してください。

ウェブページ

任意の Web ページを追加するには、データ型 web_page を使用します。例えば:

 app.add('web_page', 'a_valid_web_page_url')

文章

独自のテキストを指定するには、データ型テキストを使用して文字列を入力します。テキストは処理されず、非常に多様になる可能性があります。例えば:

 app.add_local('text', 'Seek wealth, not money or status. Wealth is having assets that earn while you sleep. Money is how we transfer time and wealth. Status is your place in the social hierarchy.')

注: ほとんどの場合、段落全体またはファイル全体を提供するため、例ではこれは使用されません。

<<:  Dubbo 負荷分散戦略コンシステントハッシュ

>>:  貧困が私を訓練した

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

人工知能が広く利用され、アルゴリズムの公平性の重要性が強調されている

最近、大学入試の受験生が試験会場で小校舎を使って問題を検索する問題が大きな論争を引き起こし、大学入試...

その光景は衝撃的だ! 「世界最強」のロボット9台が国連AIロボット会議のステージに登場

今日はスカイネットが来ます!ロボットたちはジュネーブで初めての記者会見を開催したばかりだ。 9 台の...

ちょうど今、OpenAIはマスク氏を反論する記事を公式に発表し、過去8年間の電子メールのやり取りのスクリーンショットを公開した。

最も注目されているテクノロジー企業OpenAIと世界一の富豪マスク氏との壮大な戦いは新たなレベルに達...

脳も学習を強化しています! 「価値判断」は脳によって効率的にコード化され、ニューロンに公開される

[[437266]]私たち一人ひとりは、人生において、「今夜何を食べるか」「明日はどこに遊びに行くか...

OpenAI が深夜に 5 つのモデル アップデートを割引価格でリリースします。

編集者 | ヤン・ジェン現地時間1月25日、OpenAIは新モデルをリリースし、GPT-3.5 Tu...

人工知能の応用: 病気を予測し治療を改善する 3 つの新しい方法

医療における AI の興味深い応用例の 1 つは、治療が患者に及ぼす潜在的な影響を予測することです。...

人工知能は学習を通じて人類を自然災害から救うことができます。

通常、人間が機械を作るのは、達成するのが難しいタスクを人間が完了するのを助けるためだけです。自然災害...

2021年に自動運転は私たちをどこへ連れて行くのでしょうか?

[[361430]]文/Quiu Yueye 編集/Tan Lu新年、自動運転は私たちをどこへ連れ...

「スペースを時間で交換する」アルゴリズムはキャッシュの世界へとあなたを導きます

私たちは、アルゴリズムの時間計算量や空間計算量についてよく考えます。時間や空間が十分にある場合、その...

顔認識技術の法的ギャップを埋める必要がある

顔認識などの新興技術が普及し、何百万人もの人々の生活に入り込むにつれて、技術の使用をめぐる論争がます...

新しい機械学習システムがロボットに社会的なスキルを与える

ロボットは大学のキャンパスに食べ物を配達したり、ゴルフコースでホールインワンを達成したりすることがで...

...

インターネットの理解からユーザーの理解へ、Google は今回何に賭けているのでしょうか?

Google I/O カンファレンスは予定通り開催されます。北京時間5月12日午前1時、Googl...

AIビッグモデルが急増しており、将来はデータと現実の統合を促進することに重点を置くべきである

AIGCの「風」は人々の生産と生活のあらゆる分野に吹き込み、巨大な市場チャンスももたらしました。 I...

人工知能が実戦投入され、すでに一部は排除・解雇されている!

脳極体[[237444]]全世界を置き換えると叫んだ人工知能は、ついに失業という苦境に陥った。スウェ...