Metaの最新自社開発チップの結果が明らかに、7nmプロセス、RISC-V CPUを統合

Metaの最新自社開発チップの結果が明らかに、7nmプロセス、RISC-V CPUを統合

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式サイトにアクセスして許可を申請してください。

海外メディアROAD TOVRによると、Meta Reality Labsの研究者らが、Codec Avatarsプロジェクトのレンダリングをサポートし、AI処理専用のカスタムアクセラレータチップを搭載したVRヘッドセットのプロトタイプを作成したという。

Facebook が社名を Meta に変更するずっと前から、同社は VR で「写真のようにリアルな」仮想アバターを実現することを目指す Codec Avatars プロジェクトに取り組んでいた。このシステムは、AI 処理と、視線追跡や口追跡などのデバイス上のセンサーを組み合わせて、ユーザーの顔を可能な限りリアルな方法で仮想世界に投影します。

Codec Avatars 研究の初期バージョンは、NVIDIA Titan X GPU の計算能力によって実現されました。しかし、Meta の最新の Quest 2 オールインワンデバイスのようなデバイスでは、その機能を十分に活用することはできません。

このため、Meta は Codec Avatars プロジェクトの機能を低電力のオールインワン デバイスに実装する方法に取り組んでいます。

先月開催されたIEEE CICCカンファレンスで発表された論文の中で、MetaはCodec Avatarsのアクセラレータとして機能する7nmプロセスを使用したカスタムチップを設計していることを明らかにした。

実際、Meta のチップ製造計画は 2018 年にはすでに始まっていました。 2018年4月、Facebookはシャリアール・ラビー氏を副社長兼チップ部門責任者として採用した。ラビー氏は以前Googleに勤務し、Pixelスマートフォン向けVisual Coreなどのチップの開発に携わっていた。

研究者らは、このチップが紙の上から現実のものになるまでにはまだ長い道のりがあると述べている。

チップ設計プロセス中に、設計者はコーデック アバター モデルの生成に必要なデータを考慮しました。

「テストチップは7nmプロセスを採用しており、1024の積和演算アレイ、2MBのオンチップSRAM、32ビットRISC-V CPUで構成されるニューラルネットワークアクセラレータを搭載している」と研究者らは述べた。

一方、チップの特定のアーキテクチャに合わせるために、設計者はコーデックアバター AI モデルの一部も再構築しました。

「畳み込みニューラルネットワークベースの視線モデルを再構築し、ハードウェア向けにカスタマイズしてチップに適したものにしました。これにより、オフチップメモリ​​アクセスのエネルギー消費と待ち時間が削減されます」とリアリティラボの研究者は書いています。

アクセラレーション チップは、モデルの動作を高速化するだけでなく、コーデック アバターのワークロードの重い部分を高速化することで、電力と熱を削減します。チップのカスタマイズの利点により、このカスタマイズされたチップは、電力と音量制御の点で一般的な CPU よりも多くの利点があります。

研究者らによると、このチップはすでにコーデックアバターモデルを毎秒30フレームで実行できるという。同時に、消費電力が低く、サイズも小型です。

専用チップの高速化により、Meta の Codec Avatars はオールインワン デバイスでも実行できるようになるかもしれません。しかし、アバターの視覚的なレンダリングがどの程度うまく機能するかはまだわかりません。オールインワン以外のマシンで実行する場合、モデルはユーザーのスキャンを非常に詳細にモデル化しますが、Quest2 などのオールインワン マシンでは完全にレンダリングするには複雑すぎる可能性があります。これらの客観的な条件の制約下で、コーデック アバターの強力な「リアルな」画像が最終的にどのように見えるかはまだ不明です。

この特別に設計されたアクセラレーション チップにより、XR 固有のさまざまな機能が実現できると考えられます。たとえば、XR プレイヤーは、没入感を高めることができる空間オーディオが XR の世界に実装されることを望んでいます。ただし、リアルなサウンドシミュレーションは、実際の使用時にコストが増加するだけでなく、バ​​ッテリー寿命にも影響します。

さらに、位置追跡とジェスチャ追跡も XR エクスペリエンスの重要な部分であり、これらの領域のハードウェアとアルゴリズムを組み合わせることで、XR デバイスの速度とパワーを大幅に向上させることができます。

<<:  初めてバーチャルヒューマンに関する業界の合意が成立

>>:  オフライン認識率が最大99%のオープンソースPython顔認識システム〜

ブログ    
ブログ    
ブログ    

推薦する

2021 年のロボティック プロセス オートメーション (RPA) 面接の 6 つの質問

[[379840]] [51CTO.com クイック翻訳] 求職者や採用担当者は、RPA 面接にどう...

...

機械学習が自閉症の「非コード変異」の秘密を解明

新たな研究によると、遺伝子間の自然発生的な突然変異は、生まれつきの遺伝子と同じくらい自閉症において重...

AI、機械学習、ディープラーニングはOEMにとって重要な市場です

人工知能 (AI) は、世界中の業界関係者のビジネスのやり方を急速に変えています。 AI がビジネス...

AIの計算能力は70年間で6億8000万倍に増加し、3つの歴史的段階でAI技術の指数関数的爆発が目撃されました。

電子コンピュータは 1940 年代に発明され、登場から 10 年以内に人類史上初の AI アプリケー...

...

サービスロボット市場の最前線に立つセキュリティは注目に値する

現在、サービスロボットは中国のロボットが他のロボットを追い抜く重要なチャンスとみなされており、あらゆ...

5種類の画像注釈の紹介

[[341366]] [51CTO.com クイック翻訳] 画像内のさまざまなグラフィック領域の注釈...

2024 年のトップ 10 戦略的テクノロジー トレンド

当然のことながら、AI と自動化は、テクノロジーの混乱や社会経済の不確実性に対処するために不可欠であ...

顔認識の長所と短所:祝福か呪いか?

[[403037]]画像ソース: https://pixabay.com/images/id-32...

...

...

...