AI、機械学習、ディープラーニングはOEMにとって重要な市場です

AI、機械学習、ディープラーニングはOEMにとって重要な市場です

人工知能 (AI) は、世界中の業界関係者のビジネスのやり方を急速に変えています。 AI がビジネスや商取引で広く使用されるようになるにつれ、よりスマートな製品からより重点的な顧客サービスまで、あらゆる面で進化が見られます。人工知能は、サプライヤー、メーカー、顧客のやり取りやコラボレーションの方法を根本的に変えています。

[[328057]]

では、これは OEM にとって何を意味するのでしょうか? 簡単に言えば、OEM には 2 つの選択肢があります。 AI 主導のビジネス機能を組み込むことでソリューションを適応させるか、進化する競争環境の中で他の先進的な AI 重視の OEM に遅れをとるかのどちらかになります。

最近では人工知能(AI)があらゆるところに存在していることは明らかです。特に製薬業界やヘルスケア業界、小売業界など、特定のニッチなアプリケーションでは体系的に導入されています。しかし、OEM にとって重要な大規模な機会が生まれるのは、OEM が複数の市場や業界に転送できる再利用可能な AI ソリューションを作成できるときです。これを成功させるには、OEM が AI の 2 つの主要なサブセットと、これらが幅広い業界ソリューションの開発で果たす役割を理解することが重要です。 2 つのサブセットは、機械学習とディープラーニングです。

機械学習が中心

機械学習は本質的に AI の構成要素です。機械学習は、新しい情報や追加の情報が提供されると、継続的に更新および修正する機能を備えたシステムです。機械学習は本質的に動的なプロセスであるため、コンピュータ ネットワークはプログラムなしでも学習できます。このように、これらのシステムは人間の介入を必要としないため、完全に自立しています。機械学習システムは、人間の介入なしに、収集したデータを処理してほんの一瞬で意思決定を行うことができます。機械学習システムは、これまで人間が分析して処理するのに数週間かかっていたものを、数秒で解読することができます。結局のところ、機械学習プログラムの最終的な目標は、エラーを排除しながら予測の精度を最大化することです。

ディープラーニングは次の重要な段階

機械学習は AI の構成要素ですが、ディープラーニングは機械学習のサブセットと考えることができます。ディープラーニングを最も簡単に説明すると、理想的には、人間の脳の仮想バージョンのように機能するということです。ディープラーニングが他と異なる重要な領域の 1 つは、ニューラル ネットワークを構築する能力です。これらのニューラル ネットワークは、多くの場合、機械学習によって提供される結果よりも正確な結果をもたらします。ディープラーニングは、非構造化データから学習する機能も備えています。ディープラーニング システムは、新しいデータのラウンドごとに吸収しながら、レイヤーごとにシステムに結果を構築することで知られています。機械学習とは異なり、ディープラーニングはニューラルネットワークを活用できるため、人間の入力なしでますます複雑な決定を下すことができます。

OEMにとって絶好のチャンス

OEM にとって、AI の未来は今です。ある程度、AI 機能を組織に取り入れたいと思わない企業や業界は存在しません。 AIと機械学習およびディープラーニングの急速な統合はますます一般的になりつつあります。 Grand View Researchの最新レポートによると、世界の人工知能市場規模は2025年までに3,900億米ドルに達すると予想されています。市場は2019年から2025年にかけて46.2%のCAGRで成長すると予想されています。このため、AI、機械学習、ディープラーニングの分野で「パックを正しく理解する」OEM は、この急成長市場で最終的に圧倒的に大きなシェアを獲得することになります。

<<:  今後 20 年以内に、完全自動運転のコネクテッドカーが登場するでしょうか?

>>:  AIデコードと同じくらい魔法的? AIによるカラーリングはブラックテクノロジーなのか、それとも単なるジョークなのか?

ブログ    
ブログ    
ブログ    

推薦する

IoTとAIはビジネスの生産性を向上させる完璧なパートナーです

今日のハイテクな世界では、何百万ものデバイスが相互作用し、データを交換し、貴重な洞察を重要な行動方針...

ゼロから始める: すぐに使えるニューラルネットワークを作成することもできます

何か新しいことを受け入れたり、始めたりするのは決して簡単なことではありません。機械学習は、新しいプロ...

30% のトークンで SOTA パフォーマンスを達成、Huawei Noah 軽量ターゲット検出器 Focus-DETR が効率を 2 倍に

現在、DETR モデルはターゲット検出の主流のパラダイムとなっています。しかし、DETRアルゴリズム...

...

USPTO レポート: 人工知能を使わないと取り残される!

米国特許商標庁(USPTO)が10月27日に発表した新しい報告書によると、2018年のすべての新しい...

AI が電子商取引におけるウェブサイト アクセシビリティ訴訟のリスクを最小限に抑える方法

進化する人工知能により、電子商取引分野におけるウェブサイトのアクセシビリティ訴訟のリスクを最小限に抑...

2022年にエネルギー・公益事業分野で注目すべき4つの技術トレンド

[[440332]]画像ソース: https://pixabay.com/images/id-425...

LLM幻覚問題の徹底レビュー! HITチームの50ページのレビューが公開された

幻覚だよ、古い友人よ。 LLM が私たちの視野に入って以来、錯覚の問題は常に無数の開発者を悩ませてき...

物議を醸すClearview AI:顔認識アプリケーションは民間企業には販売されなくなった

生体認証技術といえば、アメリカの Clearview AI 社を挙げなければなりません。同社は最も包...

快手ドラゴンフライ戦略エンジンの設計と応用

1. 問題と課題1. 問題の背景2018年以来、Kuaishouの事業全体は急速に発展しており、チー...

...

...

SSDエラー訂正アルゴリズムの過去と現在

エラー訂正コード (ECC) は、送信プロセス中にエラーが発生した後に受信側でエラーを検出して訂正で...

...