汎用人工知能(AGI)の分野で達成すべき4つの大きなマイルストーン

汎用人工知能(AGI)の分野で達成すべき4つの大きなマイルストーン

GPT と GAN で多くの進歩があったにもかかわらず、AGI は解決が難しい問題のままです。本質的に、汎用知能は定義が難しく、おそらく達成不可能です。

Google Deepmind と Open AI のトップクラスの人材が、AGI を解決する方法の探求に懸命に取り組んでいます。多くの研究者は、汎用知能を解決するために不可欠であると私が考える重要な概念に気づいていないようです。 Numenta の研究者は最近、AGI の実現に不可欠であると私が同意する 4 つの基本概念を概説しました。これらの概念は、AI 研究の広範な分野において真剣に検討する価値があります。

1. 学び続ける

機械学習アルゴリズムは静的なデータセットを使用してトレーニングされ、トレーニングプロセスが完了するとアルゴリズムを使用できるようになります。

たとえば、Open AI GPT3 が 2021 年にトレーニングされたとき、コロナウイルスについては知っていたかもしれませんが、ウクライナで進行中の緊張については知らなかったでしょう。アルゴリズムがウクライナについて学習したのは、2022 年のインターネット テキスト データでトレーニングした後のことでした。一方、ウクライナの緊張状態はご存知でしょう。なぜでしょうか? 答えは継続的な学習です。

別の例として、テスラのオートパイロット システムが惰性で停止するようにトレーニングされたとき、それが間違っていることを学習したからではなく、惰性で停止しないように更新されるまで惰性で停止し続けました。重要なのは、人間の脳は絶えず学習し、世界のモデルを更新しているが、現在の AI アルゴリズムはそうではないということです。効果的な AI アルゴリズムを継続的に学習することが、AGI を実現するための画期的な進歩となるでしょう。

2. 物理的な世界を学び、探求する

一見すると、一般知能は物理学や物理世界とはあまり関係がないように思えるかもしれません。しかし、AI アルゴリズムが一般的にインテリジェントな決定を下したり、人間の物理世界でインテリジェントな方法で動作したりするには、現実世界の物理的要素を体験し、実験できなければなりません。そうしないと、AI が実行する世界に関連する複雑な推論、意思決定、またはアクションが、孤立した動作につながる可能性があります。さらに、人間は物理的な世界を完全に理解していないため、AI アルゴリズムはシミュレートされた仮想世界でトレーニングされるべきではないと私は考えています。つまり、人間の脳は動きを通して物理的な世界を理解すると考えられています。画期的な AI アルゴリズムは、物理的な世界を移動することで物理法則を学習します。

3. 一般化

ゼロショット学習 (ZSL) は、子供がこれまで見たことのない新しい車を見て、それに応じて反応するときに発生します。この一般化は、以前の学習や直感に基づいている可能性があり、これは脳が使用するモデルフリーのアプローチに関連していると思います。画期的な AI は、壊滅的な結果を生み出すことなく、ある程度の一般化や外挿を可能にする構造を備えています。

4. 参照学習

ジェフ・ホーキンスの千脳知能理論は、参照フレームの概念に基づいています。私の理解では、参照フレームとは、脳が作成して保存(維持)する抽象的な概念(ニューロン間の接続)です。理論によれば、脳はこれらの参照フレームを使用して考え、計画し、予測します。画期的な AGI アルゴリズムは、複雑な概念をマッピングして保存するための参照フレームに似た構造を持つ可能性があります。ただし、現在の ANN 設計では、このような接続が存在する可能性があり、必要なブレークスルーは、継続的な学習、物理世界の探索、および一般化に基づいて、このような接続の形成、変更、および分散を自動化することです。

AI 研究者や技術者がこれらの概念を真に受け入れれば、人間レベルの知能特性を備えた AI が出現する可能性があると私は予測しています。彼らがこれを読んでくれることを願います。

原題: ​​4 Artificial General Intelligence Milestones We Need ​​、著者: Mike Hassaballa

<<:  ブリッジで人間の世界チャンピオン8人が全員AIに負ける

>>:  春の耕作が進むにつれ、農業ロボットが近代的な農業システムの形成に貢献している

ブログ    
ブログ    
ブログ    

推薦する

レビュー: 8 月に Github で注目すべき 7 つのデータ サイエンス プロジェクト

[[279134]]機械学習の旅で次の大きな一歩を踏み出す準備はできていますか? 実験的なデータセッ...

このCVデータセットジェネレーターは人気があり、DeepMindなどが作成した13種類のCVタスクをサポートしています。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

中国で自動運転元年となるのは何年でしょうか? 2021年かも

インテリジェント化は将来の自動車発展の基本的な方向であり、自動運転技術は将来の自動車発展の重要な最先...

...

世界を支配するトップ 10 のアルゴリズムをご存知ですか?

Reddit に、私たちの現代生活におけるアルゴリズムの重要性と、どのアルゴリズムが現代文明に最も...

ディープラーニングツール: TensorFlow と NLP モデル

[[200204]]序文自然言語処理 (略して NLP) は、コンピューターが人間の言語を処理する方...

AI技術がピカソの隠された絵画の発見を助ける

[[429170]]最近、外国メディアの報道によると、有名になる前のパブロ・ピカソは、必ずしも画材を...

次のマーク・ザッカーバーグはAIになるのか?

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

「顔認識」はあなたの「顔」を盗む

3月15日にも、別の悪徳業者が監視カメラで摘発されたが、消費者の関心を最も集めたニュースは「顔情報の...

デジタル外交はAI外交へと進化している。どのような課題に直面するのだろうか?

外交活動に関して、近年最も議論されている概念は「デジタル外交」であろう。 2010年には、当時米国務...

人工知能時代のITサービスを変える8つのテクノロジー

サービスは人間が行う仕事だということを否定する人はいないでしょう。しかし、テクノロジーはサービスを強...

Python が機械学習プロジェクトに最適な言語である理由は何ですか?

[[386401]] Python は安定性とメンテナンスのしやすさから、常に優れたパフォーマンス...

テクノロジーが伝染病との戦いに役立ちます!無人車両が配送業界の「寵児」に

2014年、わが国の宅配業界は「100億」時代に入り、それ以来高速成長傾向を維持しています。 202...

ガートナー:2026年までに企業の80%が生成型AIを導入する見込み、これは現在の16倍にあたる

アナリスト会社ガートナーは10月13日、2026年までに企業の80%以上が生成型AIアプリケーション...

企業における機械学習: 次の 1 兆ドル規模の成長はどこから来るのでしょうか?

ハリー・ポッターの世界では、組分け帽子は生徒の行動履歴、好み、性格に関するデータを取得し、そのデータ...