データ拡張とは何ですか?

データ拡張とは何ですか?

十分なトレーニング データがあれば、機械学習モデルは非常に優れたパフォーマンスを発揮します。残念ながら、多くのアプリケーションでは、高品質なデータへのアクセスが依然として障壁となっています。

この問題に対する 1 つのアプローチは、「データ拡張」、つまり既存のトレーニング例から新しいトレーニング例を生成する手法です。データ拡張は、データに制約のある環境下で機械学習モデルのパフォーマンスと精度を向上させる低コストで効果的な方法です。

機械学習モデルの過剰適合

機械学習モデルが限られた数の例でトレーニングされると、「過剰適合」する傾向があります。 「オーバーフィッティング」は、機械学習モデルがトレーニング例に対して正確に機能するが、未知のデータに対して一般化できない場合に発生します。

機械学習における「過剰適合」を回避するには、別のアルゴリズムを選択したり、モデルの構造を変更したり、パラメータを調整したりするなど、いくつかの方法があります。しかし、最終的には、「過剰適合」の主な解決策は、トレーニング データセットにさらに高品質のデータを追加することです。

たとえば、画像分類タスクに特に適した機械学習アーキテクチャである畳み込みニューラル ネットワーク (CNN) を考えてみましょう。大規模で多様なトレーニング例がなければ、CNN は最終的に現実世界の画像を誤分類することになります。一方、さまざまな角度やさまざまな照明条件での物体の画像で CNN をトレーニングすると、現実世界の物体を認識する能力が大幅に強化されます。

ただし、追加のトレーニング例を収集するには、コストがかかり、時間がかかり、場合によっては不可能になることもあります。この課題は、教師あり学習アプリケーションではさらに困難になります。なぜなら、トレーニング例には人間の専門家がラベルを付ける必要があるからです。

データ拡張

トレーニング データセットの多様性を高める 1 つの方法は、既存のデータのコピーを作成し、それに小さな変更を加えることです。これを「データ拡張」と呼びます。

たとえば、画像分類データセットにアヒルの画像が 20 枚あるとします。アヒルの画像のコピーを作成し、水平方向に反転することで、「アヒル」クラスのトレーニング例の数が 2 倍になりました。回転、せん断、拡大縮小、移動などの他の変換も使用できます。これらの変換を組み合わせて、独自のトレーニング例のセットをさらに拡張することもできます。

データ拡張は幾何学的演算に限定される必要はありません。ノイズを追加したり、色設定を変更したり、ぼかしフィルターやシャープフィルターなどの他の効果を適用したりすることで、既存のトレーニング例を新しいデータとして使用することもできます。

データ拡張の例

データ拡張は、すでにラベルがあり、新しい例に注釈を付ける追加の作業が必要ないため、教師あり学習に特に役立ちます。データ拡張は、教師なし学習、対照学習、生成モデルなど、他の種類の機械学習アルゴリズムにも役立ちます。

データ拡張は、コンピューター ビジョン アプリケーション用の機械学習モデルのトレーニングにおける標準的な方法となっています。一般的な機械学習およびディープラーニング プログラミング ライブラリには、データ拡張を機械学習トレーニング パイプラインに統合するための使いやすい機能があります。

データ拡張は画像に限定されず、他の種類のデータにも適用できます。テキスト データセットの場合、名詞と動詞を同義語に置き換えることができます。オーディオ データでは、ノイズを追加したり再生速度を変更したりすることでトレーニング例を変更できます。

データ拡張の限界

データ拡張は、すべてのデータの問題に対する万能薬ではありません。これは、機械学習モデルの無料パフォーマンス向上ツールと考えることができます。ターゲット アプリケーションに基づいて、十分な例を含むかなり大きなトレーニング データセットが必要になります。

アプリケーションによっては、トレーニング データが限られているため、データ拡張が役に立たない場合があります。このような場合、データ拡張を使用する前に、最小しきい値に達するまでさらにデータを収集する必要があります。場合によっては、転移学習を使用できます。転移学習では、一般的なデータセット (ImageNet など) で機械学習モデルをトレーニングし、その後、ターゲット アプリケーションの限定されたデータで上位層を微調整して再利用します。

データ拡張では、トレーニング データセットのバイアスなどの他の問題にも対処しません。クラスの不均衡などの他の潜在的な問題に対処するために、データ拡張プロセスも調整する必要があります。

正しく使用すれば、データ管理は機械学習エンジニアのツールボックスにおける強力なツールとなり得ます。

<<:  OpenAI が GPT-3 の微調整機能を公開、コマンド 1 行で実現可能!精度は最大4倍に向上します

>>:  AIoT: IoTと人工知能の完璧な組み合わせ

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

...

人工知能が衛星衝突回避システムの開発に貢献

衛星が損傷を受けると、危険な宇宙ゴミになります。シンシナティ大学の学生たちは、損傷した衛星や宇宙船を...

...

米国の光学半導体ウエハ検査機はAIとビッグデータを統合し動作速度を3倍に向上

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

...

「機械代替」がもたらす技術的失業危機をどう見るか

[[376593]] 1月18日の光明日報によると、近年、中国の製造業は「機械が人間に取って代わる」...

AIを活用して都市の建物の特性を識別し、地震などの災害に対するリスクを予測する

人工知能は、ビジネスから工業デザイン、エンターテインメントまで、さまざまな分野で新たな機会を提供して...

ファーウェイが推進する「マシンビジョン」はインダストリー4.0成功の鍵となるのか?

最近、「新インフラ」や「デジタルインフラ」がホットワードとなっている。新インフラの一つである「産業イ...

データマイニングのコアアルゴリズムの一つである回帰

[[192284]]回帰は幅広い概念です。その基本的な概念は、変数のグループを使用して別の変数を予測...

DGX-2 および SXM3 カードが GTC 2018 で発表されました

最近、GTC 2018 で、Vicor チームは NVIDIA DGX-2 の発表を目撃しました。 ...

...

...

『Thinking Chain: Six Intuitions about Big Models』の著者、ジェイソン・ウェイ氏

ジェイソン・ウェイを覚えていますか?思考連鎖の創始者は、命令チューニングに関する初期の研究を共同で主...

OpenAI: GPT-5が危険すぎる場合、理事会はアルトマンの釈放を阻止する権利がある

OpenAIは新たな発表を行った。取締役会はアルトマン氏の決定を拒否する権限を持つようになった。特に...

JVM 世代別ガベージコレクションのプロセスとアルゴリズムの選択の図解説明

この記事は、JVM の世代別ガベージ コレクション プロセスを紹介し、さまざまなガベージ コレクショ...