データ拡張とは何ですか?

データ拡張とは何ですか?

十分なトレーニング データがあれば、機械学習モデルは非常に優れたパフォーマンスを発揮します。残念ながら、多くのアプリケーションでは、高品質なデータへのアクセスが依然として障壁となっています。

この問題に対する 1 つのアプローチは、「データ拡張」、つまり既存のトレーニング例から新しいトレーニング例を生成する手法です。データ拡張は、データに制約のある環境下で機械学習モデルのパフォーマンスと精度を向上させる低コストで効果的な方法です。

機械学習モデルの過剰適合

機械学習モデルが限られた数の例でトレーニングされると、「過剰適合」する傾向があります。 「オーバーフィッティング」は、機械学習モデルがトレーニング例に対して正確に機能するが、未知のデータに対して一般化できない場合に発生します。

機械学習における「過剰適合」を回避するには、別のアルゴリズムを選択したり、モデルの構造を変更したり、パラメータを調整したりするなど、いくつかの方法があります。しかし、最終的には、「過剰適合」の主な解決策は、トレーニング データセットにさらに高品質のデータを追加することです。

たとえば、画像分類タスクに特に適した機械学習アーキテクチャである畳み込みニューラル ネットワーク (CNN) を考えてみましょう。大規模で多様なトレーニング例がなければ、CNN は最終的に現実世界の画像を誤分類することになります。一方、さまざまな角度やさまざまな照明条件での物体の画像で CNN をトレーニングすると、現実世界の物体を認識する能力が大幅に強化されます。

ただし、追加のトレーニング例を収集するには、コストがかかり、時間がかかり、場合によっては不可能になることもあります。この課題は、教師あり学習アプリケーションではさらに困難になります。なぜなら、トレーニング例には人間の専門家がラベルを付ける必要があるからです。

データ拡張

トレーニング データセットの多様性を高める 1 つの方法は、既存のデータのコピーを作成し、それに小さな変更を加えることです。これを「データ拡張」と呼びます。

たとえば、画像分類データセットにアヒルの画像が 20 枚あるとします。アヒルの画像のコピーを作成し、水平方向に反転することで、「アヒル」クラスのトレーニング例の数が 2 倍になりました。回転、せん断、拡大縮小、移動などの他の変換も使用できます。これらの変換を組み合わせて、独自のトレーニング例のセットをさらに拡張することもできます。

データ拡張は幾何学的演算に限定される必要はありません。ノイズを追加したり、色設定を変更したり、ぼかしフィルターやシャープフィルターなどの他の効果を適用したりすることで、既存のトレーニング例を新しいデータとして使用することもできます。

データ拡張の例

データ拡張は、すでにラベルがあり、新しい例に注釈を付ける追加の作業が必要ないため、教師あり学習に特に役立ちます。データ拡張は、教師なし学習、対照学習、生成モデルなど、他の種類の機械学習アルゴリズムにも役立ちます。

データ拡張は、コンピューター ビジョン アプリケーション用の機械学習モデルのトレーニングにおける標準的な方法となっています。一般的な機械学習およびディープラーニング プログラミング ライブラリには、データ拡張を機械学習トレーニング パイプラインに統合するための使いやすい機能があります。

データ拡張は画像に限定されず、他の種類のデータにも適用できます。テキスト データセットの場合、名詞と動詞を同義語に置き換えることができます。オーディオ データでは、ノイズを追加したり再生速度を変更したりすることでトレーニング例を変更できます。

データ拡張の限界

データ拡張は、すべてのデータの問題に対する万能薬ではありません。これは、機械学習モデルの無料パフォーマンス向上ツールと考えることができます。ターゲット アプリケーションに基づいて、十分な例を含むかなり大きなトレーニング データセットが必要になります。

アプリケーションによっては、トレーニング データが限られているため、データ拡張が役に立たない場合があります。このような場合、データ拡張を使用する前に、最小しきい値に達するまでさらにデータを収集する必要があります。場合によっては、転移学習を使用できます。転移学習では、一般的なデータセット (ImageNet など) で機械学習モデルをトレーニングし、その後、ターゲット アプリケーションの限定されたデータで上位層を微調整して再利用します。

データ拡張では、トレーニング データセットのバイアスなどの他の問題にも対処しません。クラスの不均衡などの他の潜在的な問題に対処するために、データ拡張プロセスも調整する必要があります。

正しく使用すれば、データ管理は機械学習エンジニアのツールボックスにおける強力なツールとなり得ます。

<<:  OpenAI が GPT-3 の微調整機能を公開、コマンド 1 行で実現可能!精度は最大4倍に向上します

>>:  AIoT: IoTと人工知能の完璧な組み合わせ

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

...

2022 年のインテリジェント コネクテッド ビークルの技術トレンド トップ 10

100TOPS以上の性能を持つ車載グレードのコンピューティングチップが2022年に量産され、車両に...

AIを使って株取引で不正行為をしよう!この世代のプログラマーは本当に楽しみ方を知っている

ディープラーニングを使用して株価を予測することは、以前は少し神秘的に思えたかもしれませんが、新しいこ...

OpenAI、「超知能」AIを制御するための新チームを発表

米国現地時間7月6日水曜日、人工知能の新興企業OpenAIは、「超知能」人工知能システムを誘導・制御...

シンプルで効果的な新しい敵対的攻撃手法により、人気の Android アプリの DL モデルが破られることに成功

現在、多くのディープラーニング モデルがモバイル アプリに組み込まれています。デバイス上で機械学習を...

研究者らは従来のコンピューター上で複雑な量子コンピューティングアルゴリズムを実行する

EPFL のジュゼッペ・カルレオ教授とコロンビア大学の大学院生マティヤ・メドビドビッチ氏は、従来のコ...

スマート街灯は明るく光るが、スマート街灯柱には隠された秘密があることが判明

[51CTO.comよりオリジナル記事] 近年、都市化の急速な発展に伴い、中国の都市の街灯の数はます...

...

人工知能の急速な発展は人間に取って代わるのでしょうか?

[[347812]]現在の人工知能技術の発展は、主にコンピュータを媒体として活用し、自動化技術の発...

...

...

...

人工知能は「教育革命」を起こしている

人工知能は教育分野に大きな波を起こしている。この傾向は、北京師範大学とiFLYTEKが共催した「人工...