Androidスマートフォンを使用してターゲット検出モデルYOLOv5のロックを解除すると、認識速度はわずか数十ミリ秒です

Androidスマートフォンを使用してターゲット検出モデルYOLOv5のロックを解除すると、認識速度はわずか数十ミリ秒です

[[439245]]

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

ターゲット検出業界のスターモデルYOLOの最新バージョンv5が、携帯電話でもプレイできるようになりました!

見てください!わずか数十ミリ秒で、テーブル上のすべてのものが検出されました。

この速度はコンピューターの速度と同等のようですね?

自分で作ってみませんか?チュートリアルに進みます。

AndroidスマートフォンにYOLOv5を導入する

正確にはYOLOv5sです。

YOLOv5は2020年5月にリリースされました。最大の特徴は小型モデルで高速なため、モバイル端末でも十分使えることです。

実際、YOLOv5 は、画像の検出、分類、位置合わせのためのiOS アプリとして初めて人々の目に留まり、このアプリは YOLOv5 の作者自身によって開発されました。

Android デバイスにデプロイするには、次の環境が必要です。

  • Ubuntu 18.04をホ​​ストする
  • ドッカー

テンソルフロー 2.4.0
パイトーチ 1.7.0
オープンヴィーノ2021.3

  • Androidアプリ

Android Studio 4.2.1
最小SDKバージョン28
ターゲットSDKバージョン29
TFライト2.4.0

  • Androidデバイス

Xiaomi Mi 11 (メモリ 128GB/ RAM 8GB)
オペレーティング システム MUI 12.5.8

次に、GitHub で著者のプロジェクトを直接ダウンロードします。

git clone --recursive https://github.com/lp6m/yolov5s_android

ホストの評価とモデル変換には Docker コンテナを使用します。

cd yolov5s_android docker build ./ -f ./docker/Dockerfile -t yolov5s_android docker run -it —gpus all -v pwd:/workspace yolov5s_anrdoid bash

アプリ フォルダー内の ./tflite_model/*.tflite を app/tflite_yolov5_test/app/src/main/assets/ ディレクトリにコピーすると、Android Studio でアプリケーションをビルドできます。

ビルドされたプログラムは、入力画像のサイズ、推論精度、およびモデルの精度を設定できます。

「Open Directory」を選択すると、検出結果はcoco形式のjsonファイルとして保存されます。

カメラからのリアルタイム検出モードでは、精度と入力画像サイズが int8/320 に固定されています。Xiaomi 11 でこのモードで達成される画像フレーム レートは 15FPS です。

このプロジェクトは、著者が参加した「Yolov5s Export」コンテスト(最終的に 2,000 ドルの賞金を獲得)であったため、パフォーマンス評価も実施しました。

評価には遅延と精度が含まれます。

  • 遅延時間

Xiaomi 11 で測定。前処理/後処理およびデータ転送にかかる時間は除きます。

結果は次のとおりです。

モデルの精度が float32 か int8 かに関係なく、時間は 250 ミリ秒以内、つまり 0.5 秒未満で制御できます。

△ フロート32

△ 整数8

お使いのコンピューターで YOLOv5 とパフォーマンスを比較できます。

  • 正確さ

さまざまなモードでの最高の mAP (平均精度) 値は 28.5 で、最低は 25.5 です。

最後に、詳細なチュートリアルについては、以下のリンクをクリックしてください。試してみたいだけの場合は、作者は上記のAndroidインストールパッケージも提供しています〜

プロジェクトアドレス:

https://github.com/lp6m/yolov5s_android

<<:  脳波を使って魔法ダメージをアップさせよう!プレイヤーが『エルダー・スクロールズV』の脳コンピューターインターフェースを改造して魔法を発動

>>:  顔認識が再び物議を醸す

ブログ    

推薦する

「トランスフォーマー チャレンジャー」マンバはMacBookでも動く! GitHub は半日で 500 以上のスターを獲得しました

「トランスフォーマーの挑戦者」MambaがMacBookで実行できるようになりました!誰かが Git...

ロボットの認識システムはどのように機能するのでしょうか?

ビジュアルサーボシステムは、視覚情報をフィードバック信号として使用し、ロボットの位置と姿勢を制御およ...

人工知能がデジタルマーケティング業界を変革

[[391859]]人工知能はデジタルマーケティング業界に変化をもたらしているのでしょうか? はい!...

通信ネットワークにおけるOSPFプロトコルの適用とアルゴリズムの最適化

3G通信技術は広く利用されており、4Gに向けてますます進化しています。通信ネットワーク内のアクセスス...

アリババ機械知能チームの3年間の取り組みの概要

[[266129]]この記事はLeiphone.comから転載したものです。転載する場合は、Leip...

ニューラルネットワークの過剰適合を避ける 5 つのテクニック

この記事では、ニューラル ネットワークをトレーニングするときに過剰適合を回避する 5 つの手法を紹介...

AIチップのスタートアップ企業が岐路に立つ

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

...

2022年に注目すべき8つのAIトレンド

1. 5G上のAI 2022年には産業用AIとAI-on-5G IoTアプリケーションが主流になるで...

最適化問題におけるステップサイズが大きいほど、収束速度が速くなり、数十年にわたる勾配降下法アルゴリズムの従来の考え方を覆すものとなった。

機械学習の世界では、最適化問題は非常に重要であり、世界をより良い方向に変える可能性があります。最適化...

データ、AI、クラウドを活用してビル運営を変革する方法

CISO、CSO、およびそのチームは毎日、侵害を検出し、リスクを評価し、適切に対応するという課題に直...

貢献度が最も高い GitHub コレクションとディープラーニング フレームワーク 16 選

ビッグデータ概要編纂者:Jingzhe、Shijintian、Jiang Baoshangディープラ...

李開復氏は、AIが今後20年間で5つの主要産業に大きな影響を与えると予測している。

最近、Sinovation Venturesの創設者であるKai-Fu Lee氏が「AIの急速な時代...

Unity Greater China プラットフォーム テクノロジー ディレクター Yang Dong: メタバースでのデジタル ヒューマンの旅の始まり

デジタルヒューマンは、メタバースコンテンツ構築の礎として、持続的に実装および開発できる最も初期の成熟...

ジョン・マカフィーの意見: 人工知能は人類を滅ぼすのか?

2017 年 3 月 9 日、ハッカー アンダーグラウンド テクノロジーの専門家であり作家でもある...