Androidスマートフォンを使用してターゲット検出モデルYOLOv5のロックを解除すると、認識速度はわずか数十ミリ秒です

Androidスマートフォンを使用してターゲット検出モデルYOLOv5のロックを解除すると、認識速度はわずか数十ミリ秒です

[[439245]]

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

ターゲット検出業界のスターモデルYOLOの最新バージョンv5が、携帯電話でもプレイできるようになりました!

見てください!わずか数十ミリ秒で、テーブル上のすべてのものが検出されました。

この速度はコンピューターの速度と同等のようですね?

自分で作ってみませんか?チュートリアルに進みます。

AndroidスマートフォンにYOLOv5を導入する

正確にはYOLOv5sです。

YOLOv5は2020年5月にリリースされました。最大の特徴は小型モデルで高速なため、モバイル端末でも十分使えることです。

実際、YOLOv5 は、画像の検出、分類、位置合わせのためのiOS アプリとして初めて人々の目に留まり、このアプリは YOLOv5 の作者自身によって開発されました。

Android デバイスにデプロイするには、次の環境が必要です。

  • Ubuntu 18.04をホ​​ストする
  • ドッカー

テンソルフロー 2.4.0
パイトーチ 1.7.0
オープンヴィーノ2021.3

  • Androidアプリ

Android Studio 4.2.1
最小SDKバージョン28
ターゲットSDKバージョン29
TFライト2.4.0

  • Androidデバイス

Xiaomi Mi 11 (メモリ 128GB/ RAM 8GB)
オペレーティング システム MUI 12.5.8

次に、GitHub で著者のプロジェクトを直接ダウンロードします。

git clone --recursive https://github.com/lp6m/yolov5s_android

ホストの評価とモデル変換には Docker コンテナを使用します。

cd yolov5s_android docker build ./ -f ./docker/Dockerfile -t yolov5s_android docker run -it —gpus all -v pwd:/workspace yolov5s_anrdoid bash

アプリ フォルダー内の ./tflite_model/*.tflite を app/tflite_yolov5_test/app/src/main/assets/ ディレクトリにコピーすると、Android Studio でアプリケーションをビルドできます。

ビルドされたプログラムは、入力画像のサイズ、推論精度、およびモデルの精度を設定できます。

「Open Directory」を選択すると、検出結果はcoco形式のjsonファイルとして保存されます。

カメラからのリアルタイム検出モードでは、精度と入力画像サイズが int8/320 に固定されています。Xiaomi 11 でこのモードで達成される画像フレーム レートは 15FPS です。

このプロジェクトは、著者が参加した「Yolov5s Export」コンテスト(最終的に 2,000 ドルの賞金を獲得)であったため、パフォーマンス評価も実施しました。

評価には遅延と精度が含まれます。

  • 遅延時間

Xiaomi 11 で測定。前処理/後処理およびデータ転送にかかる時間は除きます。

結果は次のとおりです。

モデルの精度が float32 か int8 かに関係なく、時間は 250 ミリ秒以内、つまり 0.5 秒未満で制御できます。

△ フロート32

△ 整数8

お使いのコンピューターで YOLOv5 とパフォーマンスを比較できます。

  • 正確さ

さまざまなモードでの最高の mAP (平均精度) 値は 28.5 で、最低は 25.5 です。

最後に、詳細なチュートリアルについては、以下のリンクをクリックしてください。試してみたいだけの場合は、作者は上記のAndroidインストールパッケージも提供しています〜

プロジェクトアドレス:

https://github.com/lp6m/yolov5s_android

<<:  脳波を使って魔法ダメージをアップさせよう!プレイヤーが『エルダー・スクロールズV』の脳コンピューターインターフェースを改造して魔法を発動

>>:  顔認識が再び物議を醸す

推薦する

ガートナー:2021年までに70%の組織が従業員の生産性向上にAIを活用する

人工知能は職場にますます浸透しつつあり、現在では仮想パーソナルアシスタント (VPA) やその他の形...

OpenAI が GPT-4 やその他のモデルを更新し、新しい API 関数呼び出しを追加し、価格を最大 75% 引き下げ

数日前、OpenAIのCEOサム・アルトマン氏は世界ツアーのスピーチで、OpenAIの最近の開発ルー...

ニューラルネットワークの動作原理を1つの記事で理解する

この記事では、ディープ ニューラル ネットワークの一般的な概要を説明します。今日では、人工知能につい...

...

権威ある業界レポートが発表されました。我が国のロボット開発の特徴と傾向は何ですか?

ロボットは「製造業の至宝」とみなされており、ロボット産業の発展は国家のイノベーションと産業競争力の向...

スマートインフラがコミュニティを良くする5つの方法

フロスト&サリバンによる最近の分析によると、スマートシティ技術への世界的な投資は2025年までに22...

スタンフォード大学は4年連続でAIレポートを発表しています。今年はどんな内容が取り上げられたのでしょうか?

2021年スタンフォードAIインデックスレポートが正式にリリースされ、過去1年間のAIの全体的な発...

...

CNNの簡単な分析と、長年にわたるImageNetチャンピオンモデルの分析

[[189678]]今日は、ディープラーニングにおける畳み込みニューラル ネットワークのいくつかの原...

...

脳コンピューターインターフェースが人間の思考を制御するのではないかと心配ですか?神経科学者:考えすぎ

[[400401]]現在、脳コンピューターインターフェースの急速な発展により、人々はパニックに陥って...

Patronus AI が LLM に懸念すべきセキュリティ上の欠陥を発見

自動評価および安全性プラットフォームである Patronus AI は、大規模言語モデル (LLM)...

KServe、Kubernetes環境に基づく高度にスケーラブルな機械学習デプロイメントツール

ChatGPT のリリースにより、機械学習技術の活用を避けることがますます難しくなってきています。メ...

...

人工知能の活発な発展は、ホストのような人々が将来的に職を失うことを意味する。

仮想ホスト[[427210]]科学技術の急速な発展に伴い、多くのハイテク製品が私たちの生活に登場して...