ローカル AI: スマートフォン時代の低消費電力分析

ローカル AI: スマートフォン時代の低消費電力分析

人工知能にはボトルネック問題があります。これはディープ ニューラル ネットワークに基づいており、数億から数十億の計算が必要になる可能性があり、処理とエネルギーを大量に消費するタスクです。さらに、これらの分析計算やその他の分析計算を実行するために、メモリへのデータの出し入れにかかるコストと待ち時間も発生します。マサチューセッツ工科大学 (MIT) の准教授 Vivienne Sze 氏は、現在でも使用されているビデオ圧縮規格の開発に貢献したことで最もよく知られています。現在、彼女は、ビデオを処理するためのより効率的なディープニューラルネットワークと、スマートフォン、組み込みデバイス、マイクロロボット、スマートホーム、医療機器上で AI アプリケーションを実行するためのより効率的なハードウェアの設計に注力しています。

[[434142]]

彼女は最近の MIT とのインタビューで、なぜ今低電力 AI が必要なのかを説明しました。 「AI アプリケーションは、スマートフォン、小型ロボット、インターネット接続デバイス、および電力と処理能力が制限されているその他のデバイスに移行しています。課題は、AI には高い計算要件があることです。自動運転車のセンサーとカメラのデータに分析を適用すると、約 2,500 ワットを消費する可能性がありますが、スマートフォンの計算予算は約 1 ワットと低いです。」

AIをスマートフォンのような小型デバイスにローカライズすることで、「データ処理をクラウドや倉庫のサーバーラックで行う必要がなくなる」とSze氏は述べた。 「クラウドから計算をオフロードすることで、AI の範囲を拡大できます。リモート サーバーとの通信によって生じる遅延が削減されるため、応答時間が短縮されます。これは、変化する状況に即座に対応する必要がある自律ナビゲーションや拡張現実などのインタラクティブ アプリケーションにとって非常に重要です。開発デバイスでデータを処理することで、医療記録やその他の機密記録も保護されます。データは収集された場所で処理できます。」

ハードウェアの観点から、Sze 氏は「データをチップ外に送信するのではなく、ローカルで再利用する」ことを目指しています。「再利用したデータをチップ上に保存すると、処理のエネルギー効率が極めて高くなります。」ソフトウェア側では、Sze 氏はディープ ネットワーク内のエネルギーを大量に消費する「重み」を削除するアルゴリズム コードの「プルーニング」を設計するなど、さまざまな調整を行っています。彼女が研究している潜在的な応用例の一つは、神経変性疾患の診断に役立つ視線追跡だ。これは、これまでは高価なオフィス機器が必要だったが、患者の自宅で普通のスマートフォンを使って行うことができるようになる。

<<:  職場におけるAIとARの進化

>>:  プライバシー技術: 「AI レース」に勝つための秘密のアドバンテージ

ブログ    
ブログ    
ブログ    

推薦する

百度の主任科学者アンドリュー・ン氏が辞任を発表

[[186234]] 3月22日、百度のトップ科学者アンドリュー・ン氏は、英語のセルフメディアプラッ...

3,000以上のデータから200を選択する方が実際にはより効果的であり、MiniGPT-4は同じ構成のモデルよりも優れている。

GPT-4 は、詳細かつ正確な画像の説明を生成する強力で並外れた能力を実証しており、言語と視覚処理...

ディープラーニングに関しては、こちらをお読みください

編集者注: この記事の著者は、USTC のジュニアクラスの卒業生で投資家の Wang Chuan で...

探索的データ分析: 人工知能と機械学習の有効性を判断するための第一歩

データ品質の低さは、人工知能 (AI) および機械学習 (ML) テクノロジの実際のパフォーマンスを...

OpenAIがヴィンセントのビデオモデル「Sora」をリリース。一般人がその恩恵を最大化するにはどうすればいいか?

2022年11月30日のChatGPTのリリース以来、OpenAIが新しい機能をリリースするたびに...

...

ガートナーが中国のAIスタートアップに関するレポートを発表:ほとんどの企業がこれら3つの技術に注目

最近、著名な国際データ調査機関であるガートナーが「市場ガイド:中国AIスタートアップ」調査レポートを...

あなたは人工知能(AI)を本当に理解していますか?将来、人工知能によって多くの人が失業することになるのでしょうか?

[[286906]]人工知能 (AI) は、通常は人間の思考を必要とするタスクを実行できるインテリ...

5G、AI、IoTが「インテリジェントな接続」を実現する方法

5G、人工知能(AI)、モノのインターネット(IoT)技術の発展により、あらゆるものがインテリジェン...

ロボットチャットGPTが登場: ビッグモデルが現実世界に登場、DeepMindの画期的な進歩

インターネット上の言語と画像を習得した後、大きなモデルが最終的に現実世界に入り、「具現化された知能」...

AI搭載ストレージは企業がデータからより多くの価値を引き出すのに役立ちます

ストレージを、手作業で手間がかかる必需品ではなく、自動運転車として考えることができたらどうでしょうか...

フェイスブック従業員の半数が10年以内にリモート勤務、転勤、給与削減へ、ザッカーバーグは二級都市、三級都市で大量採用

[[327238]] Twitter社が永久に在宅勤務を行うと発表した後、ザッカーバーグ氏は今後5年...

...

AIを信頼していない経営者は何を考えているのか?

経営幹部は長い間、より高度な意思決定にデータ分析を使用することに抵抗し、AI 支援による意思決定より...