スマートなモノのインターネットを導入する時が来た

スマートなモノのインターネットを導入する時が来た

[[427797]]

画像ソース: https://pixabay.com/images/id-5674344/

人工知能 (AI) という言葉を聞くと、ほとんどの人は、部屋の隅にロボット掃除機が置いてあって、「こんにちは」や「やあ」と呼びかけられるのを待っているというイメージをすぐに思い浮かべるでしょう。

このようなシナリオは、部屋の照明を点灯する仮想アシスタントからデータ ポイントの処理と分析まで、幅広いアプリケーションを説明するために AI という用語を使用できることを示す優れた例です。しかし、AI は家庭のユーザーが家中の単純な作業を完了するのを支援することで最もよく知られていますが、エンタープライズ AI は急速にテクノロジー スタックの主要な部分になりつつあります。

2000 年代に入ってから、企業の将来に役立つ実用的なデータを提供する目的で、数え切れないほどの企業が設立されました。一例としては、最近のパンデミックを受けて企業のハイブリッドワークポリシーを計画する際に、データを使用して従業員の生産性を最も高める条件を解明することが挙げられます。

コントロールする

このようなデータ ポイントは、モノのインターネット (IoT) 上のノードとして分類できます。ただし、従業員を「物」と呼ぶことはお勧めしません。

いずれにせよ、企業は、実用的な洞察を得るために、各ネットワーク接続をデータと分析を抽出できるポイントとして捉え始める必要があります。従業員はまれな例かもしれませんが、会議室のセンサー、カメラ、マイクは分析と改善のためにデータを抽出できるほどスマートです。

Cisionが8月に発表した調査によると、IoT AIの世界市場は2026年までに217億ドルに達すると予想されており、企業にとってのチャンスが到来していることが示唆されています。

この規模の市場はサービスプロバイダーによって独占されることが確実であり、その挑戦を受け入れてこれらのプロバイダーと提携する企業が成功するでしょう。

接続されたデバイスと収集されるデータを中心に戦略を構築することで、企業は受け取った新しい情報に基づいて新たな決定や推奨を行うことができます。

来たるIoT革命

多くのビジネスリーダーにとって、モノのインターネットは困難な概念となる可能性があります。しかし、ロボットバリスタや荷物を配達するドローンを召喚するというビジョンは、受け入れられる必要があるものだ。

これは、接続されているすべてのデバイスが使用可能なデータを収集しているためです。たとえば、街灯の唯一のセンサーが周囲光センサーであると想像できます。しかし、最も身近な街路設備から抽出されたデータにより、道路が最も混雑する時間、空いている駐車場、天候パターン、特定のエリアでの歩行者の経路などを追跡することができます。

これは、企業が活用する必要があるデータ収集のレベルです。 Statista によると、2025 年までに、世界中に 750 億台以上の接続デバイスが設置され、それぞれがこれまでにない速度でデータを抽出するようになります。

ただし、適切な AI とリアルタイム分析がなければ、このデータを十分に活用することはできません。過去 10 年間で、データがどのように使用されて気温上昇を予測したり、投票に影響を与えるために操作されたりするかを理解してきました。

今後 10 年間で、IoT の使用事例は爆発的に増加し、これらのデバイスがもたらす情報を活用、分析、理解できる次世代の開発者向けにデータが抽出されるようになります。企業は、センサー データやその他の自動生成されるマシン データ専用の新しいグローバル データ センター戦略を開発する必要があります。

高速、低遅延、成熟したネットワーク ファブリックを備えた 5G の追加により、ネットワーク エッジのデバイスも増加し、基礎分析によってこれらの実用的な洞察の提供が加速されるようになり、クラウドからエッジへの移行も進んでいます。

これほど巨大な市場では、努力できる分野はたくさんあるでしょう。たとえば、エンタープライズ市場には、仕事の未来を設計するために必要なデータを企業に提供しようとしている分析プロバイダーがすでに多数存在していますが、十分なサービスが提供されていない市場には常にギャップが存在します。

実際のところ、データ革命とチャンスは始まったばかりです。これにより、企業が利益を得られるまったく新しい市場が生まれます。しかし、参加を希望する企業は今から変化を受け入れ始める必要があり、その結果、新たな機会と新たな成長を経験することになるでしょう。 (iothome による編集)

<<:  カリフォルニア工科大学がドローンに足を与える:歩行と飛行、スケートボード、綱渡りをシームレスに切り替える

>>:  Google は交通信号に AI を導入して汚染を削減

ブログ    

推薦する

2019年自動車向け人工知能コンピューティング技術と市場動向

[[258319]]人工知能 (AI) は、私たちの毎日の通勤を含め、ゆっくりと、しかし確実に、より...

次世代ビッグデータ・人工知能基盤技術の発展と動向

2018 年はオープンソース ソフトウェアの歴史の中で最もエキサイティングな年でした。2 件の IP...

...

フロントエンドエンジニアは、これらの18のトリッ​​クをマスターすることで、ブラウザでディープラーニングを習得できます

TensorFlow.js がリリースされた後、以前にトレーニングしたターゲット/顔検出モデルと顔...

PG&E、AIを活用して山火事のリスクを軽減

2018年、パシフィック・ガス・アンド・エレクトリック(PG&E)の送電線の故障により発生し...

機械学習の成功事例 5 つ

人工知能と機械学習は企業の世界で注目を集めており、組織はますますこれらのテクノロジーを活用して顧客の...

機械学習は数字を数え、マウスをクリックしてモデルをトレーニングし、残りはコンピューターに任せます

[[432947]] JAVA ベースで開発された Weka は、機械学習やデータマイニングに適した...

チューリング賞受賞者のヤン・ルカン氏への最新インタビュー: AI は世界を支配するだろうが、人類を征服することはない!

かつての共同研究者であるジェフリー・ヒントン氏とヨシュア・ベンジオ氏がAIの絶滅を宣言したとき、ルカ...

建物内の生体認証システム

新しい建物では、利用可能なリソースの最適化を最大限にしながら、セキュリティと有用かつ重要なデータを豊...

チャットテクノロジーと IoT セキュリティの将来はどうなるのでしょうか?

OpenAIは2022年11月30日にChatGPTをリリースしました。大規模言語モデル GPT3...

疫病流行後、自動運転開発の方向性がより明確になりました!

自動運転は長い間、人々に「とても人気があるが、とても遠い存在」という印象を与えてきました。それは、何...

歴史上3大AI失敗事例を徹底解説

[51CTO.com クイック翻訳] 今日言及された事故のほとんどはAI自体と直接関係はありませんが...

...

...