サイバーセキュリティは重要な戦略的必須事項となっており、今日の企業は進化し続けるサイバー脅威から IT 資産を監視し、保護する必要があります。現代のすべての企業には、サイバーセキュリティの脅威や侵害を防止、検出、評価、対応するための強力で包括的なサイバーセキュリティ プログラムが必要です。サイバーセキュリティは多くの点で独特であり、検出と監視の多くは相関関係と予測に関するものであり、評価、分析、自動化に AI と機械学習のソリューションを組み込むことでメリットを得ることができます。
人工知能と機械学習によるサイバーセキュリティの向上脅威検出ハイパーコネクテッドデジタルの世界では、組織はさまざまなシステムからの膨大な量のデータを処理して、異常を検出し、脆弱性を特定し、先手を打って対応する必要があります。ほとんどの手動追跡方法とは異なり、AI および ML ベースのシステムは、1 日に何百万ものイベントを監視し、タイムリーな脅威検出と適切かつ迅速な対応を促進できます。 AI アルゴリズムは、過去と現在のデータに基づいて開発され、「正常」を定義し、その「正常」から逸脱した異常を識別できます。機械学習はこれらのパターンから脅威を識別できるほか、マルウェアの評価や分類、リスク分析にも使用できます。 AI アルゴリズムは、ごく小さな異常でも追跡して記録することができ、学習曲線が速いため、ユーザーの行動をより深く理解して分析できます。その結果、セキュリティ チームの作業負荷が軽減され、アルゴリズムによって誤ったアラートを識別してフィルタリングできるため、セキュリティ チームはより高い認知パフォーマンスを必要とするインシデントに集中できるようになります。 組織は、AI システムを使用して平均検出時間と平均対応時間を数日から数分に短縮することで、早期段階で損害を防ぐこともできます。 セキュリティ自動化セキュリティ タスクとプロセスの自動化は、組織の全体的なセキュリティ体制を改善し、決定論的な企業から認知的な企業へと変革するのに役立ちます。セキュリティ データを収集して相関させ、既存の危険を検出し、人間が実行できるよりも速く保護を生成して実装するのに役立ちます。 自動化により、手作業によるエラーやコンプライアンスの問題を回避し、IT リソースの負荷を軽減しながら、複雑なセキュリティ プロセスを時間に敏感な方法で処理できるようになります。また、攻撃が発生した場合に自己修復プロセスを開始し、侵害されたシステムの迅速な修復と隔離を促進します。 日常的なセキュリティ プロセスを自動化すると、セキュリティ チームのメンバーがサイバーセキュリティのより戦略的な側面に集中できるようになります。パッチ管理、ソフトウェア更新、ID 管理、ホライズン スキャンなどの毎日の複数のアラートや反復的なタスクから解放されるため、疲労が軽減されます。 予測分析予測分析と相関関係は、サイバーセキュリティにおいて重要な役割を果たし、プロアクティブな脅威インテリジェンスを実現し、企業が潜在的な攻撃の前にセキュリティ上の脅威を特定するのに役立ちます。 組織の脅威インテリジェンス システムは、商用ネットワークやオープン ソース ネットワークなど、さまざまなグローバル ソースからの情報を処理します。 AI と機械学習を非常に効果的に使用してデータと洞察を収集し、毎回手動で情報を解析するのではなく、潜在的な脅威を迅速に特定するだけでなく、それらに迅速に対応することもできます。たとえ攻撃が発生した場合でも、AI システムは影響を受けるシステムを IT インフラストラクチャの残りの部分から分離し、サイバー攻撃の影響を制限することができます。 さらに、攻撃者の行動を理解し、侵害の兆候を識別する能力があれば、インシデントを検出してより迅速に対応できるだけでなく、より適切な意思決定が可能になります。組織は AI および ML アルゴリズムをカスタマイズして、AI ベースの行動分析を含む、セキュリティ インシデントの自己報告のための信頼性の高いシステムとプロセスを確立することもできます。 対戦相手のAI サイバーセキュリティに AI を使用することにはいくつかの利点がありますが、この分野の進歩により、企業スパイ、データ侵害、金融詐欺、ディープフェイクなど、悪意のある人物による AI を利用したサイバー攻撃やソーシャルエンジニアリング キャンペーンへの道も開かれています。 一部の組織では、サイバー犯罪者をその手口で打ち負かすために、企業のサイバーセキュリティ戦略の一環として倫理的ハッキングを使用しています。しかし、AI を利用して AI 搭載のサイバーセキュリティ システムを総当たり方式で検証すると、既存のシステムを凌駕し、より高度なサイバー攻撃を実行できる AI モデルが生まれる可能性もあります。 要約するAI と機械学習は、組織のインシデント対応の常時リスク評価とオーケストレーションを通じて強力なセキュリティ フレームワークを確立するのに役立つだけでなく、予防的セキュリティ制御、ファイアウォールとアプリケーション セキュリティ、侵入防止システムなどを使用して既存のネットワーク セキュリティ アーキテクチャを強化する自動化およびオーケストレーション ツールとしても機能します。 これは、業界全体における熟練したサイバーセキュリティ専門家の不足を解消するのにも役立ちます。より多くの組織がデジタル変革を進める中、AI と ML は、従来の追跡、脅威検出、リスク評価のアプローチを超えて、これらの現代企業が回復力があり将来も対応できるサイバーセキュリティ プログラムを構築するのに役立ちます。 (キャシーが編集) |
<<: ハイエンドチップはインテリジェント運転の問題を解決できるでしょうか?
>>: Java プログラミング スキル - データ構造とアルゴリズム「基数ソート」
AIチップはクラウドとエッジに分かれています。クラウドチップは高いパフォーマンスが求められますが、...
少し前、ニューヨーク・タイムズ紙は、OpenAI が自社のコンテンツを人工知能開発のために違法に使用...
Rsync は、Unix/Linux でファイルを同期するための効率的なアルゴリズムです。2 台のコ...
2021年世界人工知能会議7月8日、「インテリジェントにつながる世界、知恵の都市を築く」をテーマに...
現時点では、ほとんどの AI がある程度問題のある偏見に基づいて構築され、現在もそれを使用しているこ...
進化し続けるテクノロジーの世界において、魅力的であると同時に不安も抱かせる概念の出現が、スーパー人工...
機械学習プロジェクトは大きな発展の可能性を秘めています。最近、韓国の人気ドラマでもこの用語が使用され...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
[[264419]] 「機械学習」「ディープラーニング」「ニューラルネットワーク」に関する高度な技...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
11月25日(劉亜竹)人が病気になる原因は、外部の病原性因子が細胞に作用することです。病原性因子が一...
研究者たちは、人工知能技術が機密情報のセキュリティを確保するための非常に優れたツールであることを発見...
天才は左にいて、狂人は右にいます。天才と狂気の間にはわずかな境界線しかありません。 AIに関しては、...