OpenAIは、テキストを使用してユーザーの感情を検出できる教師なし感情ニューロンを「巧みに」発見した。

OpenAIは、テキストを使用してユーザーの感情を検出できる教師なし感情ニューロンを「巧みに」発見した。

OpenAIは4月7日、公式サイトで最新の研究結果を発表し、感情表現を効率的に学習し、現在Amazonのレビューで次の文字を予測できる教師なしシステムを紹介した。

研究者らは線形モデルを使用して、小規模ながら広く使用されているデータセット (スタンフォード感情ツリーバンク) で非常に高い感情分析精度を達成しました。OpenAI は 91.8% の精度を達成しましたが、これまでの最高精度は 90.2% でした。このパフォーマンスは以前の教師ありシステムと同等ですが、ラベル付けされたサンプルの使用量も 30 ~ 100 倍少なくなります。

さらに、OpenAIは、そのモデルの表現には、ほぼすべての感情信号を含む独立した「感情ニューロン」も含まれていると述べた。

OpenAIは、「当社のシステムは、最小限のトレーニングデータでも、スタンフォード感情ツリーバンクでテストされた他のシステムよりも優れた結果を達成しています」と述べています。

完全教師あり学習の効果を実現するために、OpenAI のモデルはラベル付けされたサンプルを表す 2 つの変数 (緑と青の線) を選択し、各変数に対して 6920 個のサンプルをトレーニングしました (灰色の点線)。 OpenAI の L1 正規化モデル (Amazon ユーザーレビューを使用して教師なし方式で事前トレーニング済み) は、わずか 11 個のラベル付きサンプルでマルチチャネル CNN (畳み込みニューラル ネットワーク) と競合でき、232 個のトレーニング サンプルで最先端の CT-LSTM アンサンブルのレベルにまで達します。

OpenAIは、このモデルがAmazonのユーザーレビューの次の文字を予測するだけでなく、実際に感情の概念につながる可能性のある特徴を学習したので驚いたと述べた。 OpenAI は、この現象はこのモデルに特有のものではなく、入力の次のステップや次元を予測するようにトレーニングされることが多い一部の大規模ニューラル ネットワークの一般的な特性であると考えています。

トレーニング方法

Leifeng.com は、OpenAI がまず Amazon の 8,200 万件のユーザーレビューを使用して、4,096 ユニットの乗法 LSTM (mLSTM) をトレーニングし、短いテキスト内の次の文字を予測したことを知りました。チームは、1 時間あたり 12,500 文字を処理できる 4 つの Nvidia Pascal GPU を使用し、トレーニングには合計 1 か月かかりました。

これらの 4096 個のユニット (実際には浮動小数点数のベクトル) は、モデルによって読み取られた文字列の特徴ベクトルと見なすことができます。 mLSTM をトレーニングした後、OpenAI はこれらのユニットを線形に結合し、既存の教師ありデータを通じて結合の重みを学習し、元のモデルを感情分類器に変換します。

感情ニューロン

OpenAI は、L1 正則化を使用して線形モデルをトレーニングしているときに、驚いたことに、使用している学習ユニットが非常に少ないことに気づきました。さらに調査を進めた結果、研究者たちは、モデルの中に感情的価値を正確に予測できる「感情ニューロン」が実際に存在することを発見した。

モデルはテキスト内の次の文字を予測するようにのみトレーニングされていますが、モデル内の感情ニューロンはレビューを否定的または肯定的として分類できます。

他の同様のモデルと同様に、OpenAI のモデルを使用してテキストを生成できますが、違いは、OpenAI はニューロンの値を書き換えることで合成テキストの感情を制御できることです。

上の画像は、トレーニングされたモデルによって生成された合成テキストの例です。研究者らはまず感情ニューロンの値を決定し、次にモデルからサンプルをランダムに選択してコメントの感情を判定した。下の図に示すように、研究者は「わかりませんでした」という接頭辞もモデルに渡して、非常に類似したサンプルのみを選択しました。

次の図は、感情ニューロンによって表される各文字の値を示しています。赤は負、緑は正です。 「最高」や「ひどい」などの強い示唆を与える単語は、濃い色で強調表示されます。

文章やフレーズを完成した後、システムが頻繁に更新を行うことは注目に値します。たとえば、「そして、そのうちの約 99.8 パーセントは映画の中で失われました」という文では、「映画の中で」自体には感情的な内容はありませんが、モデルは「失われた」の後に否定的な更新を行い、文の終わりの後に別の大きな更新を行います。

教師なし学習

ラベル付けされたデータは機械学習の原動力となります。データの収集は簡単ですが、大規模にラベル付けするのは困難です。大規模なデータのラベル付けは、機械翻訳、音声認識、自動運転など、目に見える効果と利益がある分野でのみ実現可能です。

機械学習分野の研究者は長い間、データセットの正確な表現を学習できる教師なし学習アルゴリズムを開発し、ラベル付けされたデータがほとんどない問題を解決したいと夢見てきました。 OpenAI の研究は、大量のデータを使用して大規模な教師なしの次のステップ予測モデルを単純にトレーニングすることが、優れた表現学習機能を備えたシステムを作成するための優れたアプローチである可能性があることを示唆しています。

次のステップ

OpenAI の研究結果は、一般的な教師なし表現学習における前進を表しています。研究者たちは、言語モデル化を通じて高品質の表現を学習できるかどうかを探り、慎重に選択されたデータセットで既存のモデルを拡張しているときに、この結果を偶然発見しました。しかし、研究者たちはこの潜在的な現象の具体的な原因についてはまだよくわかっていません。

これらの結果は、長いドキュメントを含むデータでは適切に機能しません。 OpenAI は、彼らのモデルが数百、あるいは数千の時間ステップにわたって情報を記憶するのに問題があるのではないかと推測しています。階層モデルは対応する時間スケールに適応できるため、次のステップは階層モデルを試すことであると彼らは考えています。これらのモデルをさらに拡張すると、感情分析や同様のタスクにおける表現の忠実度とパフォーマンスがさらに向上する可能性があります。

入力テキストとレビュー データの違いが大きいほど、モデルのパフォーマンスは低下します。テキストサンプルのコーパスを拡張することで、より広範囲のドメインに適用できる同様に有益な表現を得られるかどうかを検証することは価値があります。

OpenAI の結果は、大規模な次のステップ予測モデルが優れた教師なし表現を学習できることを示しています。大規模なビデオ コレクションを使用して、大規模なニューラル ネットワークをトレーニングし、次のフレームを予測すると、オブジェクト、シーン、アクション分類子の教師なし表現が生成される可能性があります。

一般的に、モデル、そのトレーニング方法、データセットのプロパティを理解することが重要です。そうすることで、同様の優れた表現が得られる可能性が高くなります。

<<:  自然言語処理におけるディープラーニングの応用

>>:  李開復氏独占インタビュー:10年後には人間の仕事の50%がAIに置き換えられる

ブログ    

推薦する

現実世界の複雑な課題を解決するための LLM+模倣学習: AI2 が SwiftSage を提案

GPT-4 などの大規模言語モデル (LLM) は多くの推論タスクで優れたパフォーマンスを発揮します...

...

...

5つのAI技術トレンドが私たちの労働環境を根本的に変える

[51CTO.com クイック翻訳] 現在、人工知能技術に対する人々の見解は主に2つの陣営に分かれて...

...

...

2023年に開発者が知っておくべき6つのAIツール

Chat GPTのリリース以来、AIはプログラミングをはじめ、さまざまな分野で素晴らしい製品を生み出...

静的な知識を動的にする: ナレッジグラフからファクトグラフへ

[[392524]]ソーシャル ネットワークには、有名な「6 次の隔たり理論」があります。 「世界中...

Amazon Translateについて

Amazon Translate は、高速、高品質、手頃な価格の言語翻訳を提供するニューラル機械翻訳...

UCenter パスワードアルゴリズムのルールと生成方法

Discuz、UCHome、Supesite を含む Kangsheng の一連の製品は、同じユーザ...

Azure ML Service を使用して機械学習モデルを構築およびデプロイする

[[256196]] [51CTO.com クイック翻訳] このチュートリアルでは、Stackove...

CMU中国人がビッグモデルのブラックボックスを破り、ラマ2の嘘が一目で見抜かれた!脳波が明らかになり、LLMマトリックスが完全に明らかになった

最近、CAIS、CMU、スタンフォード、コーネル、メリーランド、ペンシルベニアなどの大学の学者たちが...

光と闇:人工知能と人類の未来

今日、人工知能 (AI) はほぼすべての業界とすべての人に影響を及ぼしています。この驚くべき技術は、...

これはGPT-4が愚かである理由についての新たな説明である

かつては世界で最も強力だと考えられていたGPT-4も、リリース以来、いくつかの「信頼の危機」を経験し...

教育省:中国はAI教育政策の提供を増やす

12月7日から8日にかけて、中華人民共和国教育部、中国ユネスコ国家委員会、ユネスコの共催による「20...