AI、機械学習、ディープラーニングの違いは何ですか?

AI、機械学習、ディープラーニングの違いは何ですか?

人工知能 (AI)、機械学習 (ML)、ディープラーニング (DL) は、重複することが多く、混同されやすい用語です。今日は、これら 3 つの側面について詳しく説明し、そのアプリケーションと使用方法を詳しく紹介します。


人工知能

私たちが周囲の状況を簡単に計算し、過去の経験から継続的に学習できることに気づいたことがありますか? 簡単に言えば、人工知能 (AI) はコンピューターに同じことを教える方法です。

人工知能は、人間の行動を予測し、それに基づいて行動できるツール、エージェント、ボット、ロボットを構築するために使用されます。テスラの自動運転車、アマゾンのAlexaやSiriはすべて人工知能の例です。

AI には 3 つのレベルがあります。

まず、弱い人工知能 (ANI) は、私たちがこれまでに成功裏に実現した唯一の種類の人工知能です。 ANI (Artificial Narrow Intelligence) は、単一のタスクを実行するように設計されており、目標指向です。 ANI は、プログラムされた特定のタスクを実行する能力が非常に優れています。 ANI の例としては、音声アシスタント、顔認識、車の運転などが挙げられます。

第二に、汎用人工知能 (AGI) とは、人間の知能や行動を模倣し、データから学習してその知能を適用してあらゆる問題を解決する能力を持つ、汎用知能を備えた機械の概念です。汎用人工知能は、あらゆる状況において人間のように考え、理解し、行動することができます。

人工超知能(ASI)とは、機械が自己認識力を獲得し、人間の能力と知能を超える可能性があるという仮説です。現実には、この形態の AI を現実世界で実現するにはまだ程遠い状況です。

機械学習

人工知能は人間の能力を模倣するという概念ですが、機械学習は機械に過去の結果から学習することを教える人工知能のサブセットです。

機械学習モデルはデータ内のパターンを探し、過去の結果とデータに基づいてあなたや私についての結論を導き出そうとします。アルゴリズムが優れた結果を出すようになると、その知識を新しいデータ セットに適用し、改善を続けます。

簡単に言えば、AI はコンピューターが人間の行動を再現する科学であり、機械学習は機械がデータから学習する方法のことです。

機械学習の種類

教師あり学習とは、大量のラベル付きデータをアルゴリズムに入力し、アルゴリズムが関連性を評価するために必要な変数も定義することです。ただし、教師あり学習ではタスクを完了するために大量のデータが必要になります。

教師なし学習は、アルゴリズムがラベル付けされた応答を持たないパターンやデータセットを見つけるのに役立ちます。この手法は、特定の目標を念頭に置かずにデータを探索する場合に使用できます。アルゴリズムはデータセットをスキャンし、共有する特性に基づいてデータをグループに分割し始めます。

教師あり学習と教師なし学習を組み合わせたものを半教師あり学習と呼びます。半教師あり学習では、主にラベル付けされたデータがアルゴリズムに入力されますが、モデルはデータセットを自由に探索し、独自の理解を深めることができます。

強化学習とは、明確に定義されたルールを使用して、機械に複数ステップのプロセスを完了するように教えることです。アルゴリズムは途中で独自の決定を下し、実行したアクションに対して報酬またはペナルティを受け取ります。

ディープラーニング

ディープラーニングは機械学習を実装するために使われる技術であると言っても過言ではありません。ディープラーニングは機械学習のサブセットであり、ディープニューラルネットワークを使用して脳内のニューロンのネットワークを模倣し、人間の助けを借りずに機械が正確な判断を下せるようにします。

ただし、ディープラーニングは機械学習の進化形と見なされることもあります。モデルの深さは、そのモデルに含まれるレイヤーの数によって表されます。ディープラーニングは人工知能分野における最新技術です。ディープラーニングでは、ニューラルネットワークを使用してトレーニングが行われます。

ディープラーニングにより、人工知能における多くの実用的なアプリケーションが可能になりました。自動運転車、より優れたヘルスケア、さらに優れた製品推奨はすべて、現在または近々登場します。

<<:  人工知能シンギュラリティと人類の未来

>>:  「顔認識」に反対する教授:最大の受益者がリスクの責任を負う

ブログ    
ブログ    
ブログ    

推薦する

機械翻訳から読心術まで、AIは人類のバベルの塔を再建できるのか?

聖書の旧約聖書創世記には、人類が団結して天国に通じるバベルの塔を建てたという話があります。この計画を...

銀行、金融、保険業界に革命をもたらす主要技術

不安定な市場環境、規制上のハードル、そしてBrexitは、好況時でも最も回復力のある企業にさえ課題を...

Megvii、AIイノベーションを加速させるため7億5000万ドルのシリーズD資金調達を完了

北京Megviiテクノロジー株式会社(以下、「Megvii」)は、シリーズDの株式資金調達の第2フェ...

アリババが世界初のAI中国語フォント「Ali Hanyi Intelligent Bold」を開発

1月22日、アリババはHanyi Fontと提携し、世界初の人工知能中国語フォント「 Ali Han...

例 | CNN と Python を使用した肺炎検出

導入こんにちは!数時間前にディープラーニング プロジェクトを終えたので、その成果を共有したいと思いま...

新たな美容問題:彼女がAIではないことをどうやって証明するか

私の家族の皆さん、人間として生きることが昨今こんなにも困難になっているとは誰が想像したでしょうか?最...

AI 計画ガイド: デジタル変革に不可欠なステップ

[[266832]]人工知能は今日のデジタル変革に欠かせない要素となり、デジタル変革の定義を完全に置...

スマートシティ:自動運転インフラの新たな一面

日常的なタスクの自動化は、現在多くの業界で関心を集めているコンセプトです。最も革命的なのは自動運転車...

自動運転のベテラン、UberのためにGoogleの機密文書14,000件を盗んだとして訴えられる

[[275279]]アンソニー・レヴァンドウスキーはシリコンバレーのスターエンジニアです。自動運転技...

将来の不動産価格決定はAIが最終決定する

一部の企業にとって、新型コロナウイルス感染症のパンデミックは壊滅的な打撃となっている。しかし、他の企...

データの品質は機械学習を成功させる鍵です

翻訳者 | 張毅校正 | 梁哲、孫淑娟出典: frimufilms が作成したビジネス写真 - ww...

OpenAIのSora、中国は追いつけないのか?

春節の時期にOpenAIのSoraが大人気でした。私も見てみましたが、正直GPT4が出た時ほどの衝撃...

ファーウェイがAI戦略とフルスタックの全シナリオAIソリューションを発表

[中国、上海、2018年10月10日] 第3回HUAWEI CONNECT 2018(ファーウェイ・...

ChatGPT が 1 周年を迎えました: 革新、論争、AI のブレークスルーの 1 年

テクノロジーの世界を永遠に変えたかもしれない GenAI チャットボットである OpenAI の C...

自動運転の未来 - 4Dミリ波レーダー

現在、自動運転車の知覚の実現は、車両に搭載されたレーザーレーダー、車載カメラ、ミリ波レーダーなどのセ...