毎日のアルゴリズム: 二分木のレベルトラバーサル

毎日のアルゴリズム: 二分木のレベルトラバーサル

[[423982]]

バイナリ ツリーが与えられた場合、そのノード値のボトムアップ レベルのトラバーサルを返します。 (つまり、リーフノードが配置されているレイヤーからルートノードが配置されているレイヤーまで、左から右にトラバースします)

例えば、二分木[3,9,20,null,null,15,7]が与えられた場合、

3

/ \

9 20

/ \

15 7

ボトムアップ レベルのトラバーサルを次のように返します。

  1. [
  2. [15,7]、
  3. [9,20]、
  4. [3]
  5. ]

解決策 1: BFS (幅優先探索)

BFS は、各レイヤーのノードをレイヤーごとに走査します。この質問では各レイヤーのノード値を返す必要があるため、BFS はこの問題に非常に適しています。 BFS は補助構造としてキューを使用する必要があります。まずルート ノードをキューに入れてから、キューのトラバースを続けます。

  1. const levelOrderBottom =関数(ルート) {
  2. if(!root) return []
  3. res = []とします。
  4. キュー = [ルート]
  5. while(キューの長さ) {
  6. curr = []とします。
  7. 温度= []
  8. while(キューの長さ) {
  9. ノードをキュー.shift() にします。
  10. curr.push(ノード.val)
  11. if( node.left ) temp.push ( node.left )
  12. if( node.right ) temp.push ( node.right )
  13. }
  14. res.push(カレント)
  15. キュー =一時 
  16. }
  17. res.reverse()を返す
  18. };

複雑性分析

  • 時間計算量: O(n)
  • 空間計算量: O(n)

ソリューション 2: DFS (深さ優先探索)

DFS は、ツリーのノードをその深さに沿ってトラバースし、ツリーのブランチを可能な限り深く検索します。

この問題における DFS の主な問題は、DFS がレベルを横断しないことです。再帰プロセス中に同じレベルのノードを同じリストに配置するには、再帰中に各ノードの深さを記録する必要があります。新しいノードに再帰する場合は、深さに対応するリストの最後にノードを配置します。

新しい深度 depth にトラバースするときに、depth に対応するリストが最終結果 res に作成されていない場合は、深度のすべてのノードを保存するために res に新しいリストを作成する必要があります。

  1. const levelOrderBottom =関数(ルート) {
  2. 定数res = []
  3. var dep =関数(ノード、深さ){
  4. if(!ノード)戻り値 
  5. res[深さ] = res[深さ]||[]
  6. res[深さ].push(node.val)
  7. dep(ノード.left , 深さ+1)
  8. dep(ノード.right 、深さ + 1)
  9. }
  10. dep(ルート, 0)
  11. res.reverse()を返す
  12. };

複雑性分析:

  • 時間計算量: O(n)
  • 空間計算量: O(h)、ここでhは木の高さ

<<:  ボーダーライン上の質問:テクノロジー企業はAIアルゴリズムを使って従業員の採用と解雇を行っている

>>:  二分木の再帰的および非再帰的トラバーサルアルゴリズムテンプレート

ブログ    
ブログ    

推薦する

死角なしの360度!カリフォルニア大学バークレー校、中国で3DHMフレームワークをリリース:1枚の写真であらゆるビデオアクションを模倣可能

任意のポーズの写真を入力し、写真の人物に「指定された動画」の動きを真似してもらうのは簡単ではありませ...

人間を殺し、ロボット犬を救う「ボストンパワー」ロボットはターミネーターに変身する

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

ジェフ・ディーンが2020年の機械学習のトレンドについて語る:マルチタスクとマルチモダリティが大きく進歩する

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

マイクロソフトは下書きを数秒でアプリに変換し、Mac Miniのようなミニデスクトップコンピューターを発売

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

顔認識の未来:スマートシティにとって何を意味するのか

顔認識技術は、スマートシティの安全を維持できる多数のアプリケーションをサポートする能力を備えています...

...

Nature: 室温超伝導体はなぜ持続できないのか?

世界中で白熱した議論を巻き起こしたLK-99論争が終結した後、ネイチャー誌の見出しに再び「室温超伝導...

...

...

...

TSN タイムセンシティブネットワークテクノロジーの簡単な分析

産業インテリジェンスの継続的な発展に伴い、産業インターネットは産業インテリジェンス発展のための重要な...

...

...

Google Loon の AI が開発者を驚かせる理由

北京時間3月5日、人工知能を使ったアルゴリズムが予想外のトリックで問題を解決しようとしており、開発者...