Google Robotics Research Scientist: ML 論文の要点を素早く理解するための 5 つの質問を覚えておきましょう

Google Robotics Research Scientist: ML 論文の要点を素早く理解するための 5 つの質問を覚えておきましょう

[[382214]]

編纂者:Qi Lubei

編集者:陳彩仙

機械学習の分野は非常にホットであり、新しいモデルやテクノロジーが絶えず急速に更新されているため、私たちは日々の仕事や勉強の中でいくつかの論文を読み、特定の分野の最新の動向を追跡する必要があります。

しかし、論文を読むときに、忘れやすいということと、要点をつかみにくいということの 2 つの不快感を感じることがよくあります。 忘れるというのは、通常、後半部分を読んだ後に前に読んだ内容を忘れてしまうこと、または数日後に読んだ論文を振り返ってみて、それが何についてのものだったのか全く思い出せなくなることを意味します。 要点を把握できないことは、論文を全体的な視点から研究することに重点を置かず、逐語的に読むことを好むことに反映されています。

では、機械学習分野の論文はどのように読めばいいのでしょうか?

Google Robotics の研究科学者 Eric Jang 氏は、自身のブログに「機械学習の論文を素早く理解する方法」という記事を投稿し、学生から「arXiv には毎日たくさんの論文が掲載されていますが、どうしたら選択的に読むことができますか?」といった同様の質問を受けることが多いと述べています。

彼は、機械学習分野のほとんどの論文を読むことの利点は、論文の論理を理解するために 5 つの簡単な質問をするだけでよく、難しい用語や数学的導出の不備など、多くのトラブルを回避できることだと示唆しました。

5つの質問は次のとおりです。

1. 関数近似器への入力は何ですか?

たとえば、1 つのオブジェクトのみが中央に配置された 224x224x3 RGB ビュー。

2. 関数近似器の出力は何ですか?

たとえば、これは入力長が 1000 ベクトルの画像に対応します。

機械学習システムの入力と出力をこのように「楕円形」の方法で考えると、アルゴリズムの用語を飛ばして、他の分野で同じ目標が他の方法で達成されているかどうかを検討することができます。 「メタ学習」の分野の論文を読むときに、このアプローチが非常に役立つことがわかりました。

機械学習の問題を入力と予想される出力のセットとして見ると、入力が出力を予測するのに十分かどうかを推論できます。この演習を行わないと、入力によって出力が決まらないランダムな機械学習の問題が発生する可能性があります。そのため、「エラー」を誘発する機械学習システムを作成することが可能です。

3. 出力の予測はどのようなコストで監視されますか? この特定の目標は世界についてどのような仮定を立てますか?

機械学習モデルは、バイアスとデータを組み合わせて形成されます。偏見は強い場合もあれば弱い場合もあります。モデルの一般化を向上させるには、バイアスをさらに追加するか、バイアスのないデータをさらに追加する必要があります。 「ただのランチはない」理論が指摘するように、優れたモデルは簡単には作れません。

一例を挙げると、多くの最適制御アルゴリズムは、安定した連続的なデータ生成プロセス、つまりマルコフ決定プロセス (MDP) を想定しています。 MDPでは、環境の遷移を通じて「状態」と「アクション」が「次の状態、フィードバック、終了するかどうか」に動的にマッピングされます。この構造は非常に一般的ですが、学習した Q 値がベルマン方程式に従うように損失を定式化することができます。

4. トレーニング後、モデルはこれまで聞いたことのない入力/出力から何を一般化できますか?

機械学習システムは、データまたはモデルのアーキテクチャから取得された情報により、適切に一般化されます。近年、一般化のレベルが高まってきています。そのため、論文を読むときは、驚くべき一般化機能とその出所(データ、バイアス、またはその両方)を探すようにしています。

因果推論、記号的アプローチ、オブジェクト中心の表現など、ノイズが多い領域では、より優れた帰納的バイアスが存在します。これらは堅牢で信頼性の高い機械学習システムを構築するための重要なツールであり、構造化データとモデルのバイアスとの境界が曖昧になる場合があることは承知しています。そうは言っても、機械学習を前進させるには学習の量を減らし、ハードコードされた動作の量を増やすことだ、と多くの研究者が信じているのはなぜなのか、私には理解できません。

私たちが「機械学習」の研究をする理由は、まさにハードコードする方法が分からないものがあるからです。機械学習の研究者として、私たちは学習方法の改善に力を注ぎ、ハードコーディングやシンボリックな方法は機械学習の研究者に任せるべきです。

5. 結論は反証可能か?

反証不可能であると主張する論文は科学の領域には属さない。

オリジナルリンク: https://blog.evjang.com/2021/01/understanding-ml.html

[この記事は51CTOコラムBig Data Digest、WeChatパブリックアカウント「Big Data Digest(id: BigDataDigest)」のオリジナル翻訳です]

この著者の他の記事を読むにはここをクリックしてください

<<:  2021 年のトップ 12 AI ツールとフレームワーク

>>:  ロボティックプロセスオートメーションの開発展望

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

IoTとAIが出会うとき: テクノロジーの未来

人工知能(AI)は驚異的な進歩を遂げ、一般に応用可能な技術として社会に影響を与えています。しかし、初...

...

Python が機械学習プロジェクトに最適な言語である理由は何ですか?

[[386401]] Python は安定性とメンテナンスのしやすさから、常に優れたパフォーマンス...

一般的な MapReduce データマイニングアルゴリズム: 平均と分散

平均と分散のマップ削減一連の数値の平均と分散の式は誰にとっても明らかだと思います。マップ関数とリデュ...

データマイニング分野における 10 の古典的なアルゴリズム - ナイーブ ベイズ アルゴリズム (コード付き)

導入ナイーブ ベイズ アルゴリズム (ナイーブ ベイズ アルゴリズムとも呼ばれます)。ナイーブ: 条...

機械に「忘却の呪文」をかける? Google、初の機械忘却チャレンジを開始

機械学習はよく話題になりますが、「機械の忘却」について聞いたことがありますか?機械学習の目的は誰もが...

...

トマシュ・トゥングズ: AI 組織が直面する 4 つの戦略的課題

編集者注: Tomasz Tunguz 氏は RedPoint のパートナーであり、スタートアップが...

CCTV:AI修復により、生産ラインから出荷された国産車の最初のバッチを再現

IT Homeは7月4日、解放CA10トラックが1956年7月に生産ラインから出荷されたと報じた。こ...

プライベートUNIT学習ノート - 対話システムの構築を簡単に始めることができます

対話システムの構築は比較的専門的で複雑なプロセスであり、通常は 3 つの主要な段階に分かれています。...

...

Canvasの画像認識技術とインテリジェントデザインについて考える

[[403856]]著者は最近、フロントエンドの視覚化と構築の技術を研究しています。最近、設計図に基...

米国の学区は校内暴力を防ぐためにAIを活用し、脅迫的な言葉を検知して管理者に通知しているが、事前診断率はわずか25%に過ぎない。

アメリカでまた銃撃事件が発生。 5月24日、テキサス州ユバルデのロブ小学校で銃撃事件が発生し、少なく...