Jupyter のアップグレード: さまざまな大規模モデルを接続し、コードを生成し、チャットを通じてエラーを修正できます

Jupyter のアップグレード: さまざまな大規模モデルを接続し、コードを生成し、チャットを通じてエラーを修正できます

これで、大規模言語モデル (LLM) が Jupyter に接続されました。

これは主に、Project Jupyter の公式にサポートされているサブプロジェクトである Jupyter AI というプロジェクトのおかげです。このプロジェクトは現在完全にオープンソースであり、接続するモデルは主に AI21、Anthropic、AWS、Cohere、OpenAI などの大手スター企業や機関から提供されています。

プロジェクトアドレス: https://github.com/jupyterlab/jupyter-ai

大規模モデルのサポートにより、Jupyter の機能も大きく変わりました。この環境では、コードを生成したり、ドキュメントを要約したり、コメントを作成したり、エラーを修正したりできるようになります。テキストプロンプトを使用してノートブックを生成することもできます。

Jupyter AI のインストール プロセスも非常に簡単です。インストール コードは次のとおりです。

 pip install 'jupyter-ai>=1.0,<2.0' # If you use JupyterLab 3 pip install jupyter-ai # If you use JupyterLab 4

さらに、Jupyter AI は LLM と対話するための 2 つの異なるインターフェースを提供します。 JupyterLab では、チャット インターフェイスを使用して LLM と会話し、コードのサポートを受けることができます。さらに、JupyterLab、Notebook、IPython、Colab、Visual Studio Code など、ノートブックまたは IPython をサポートする任意の環境で、%%ai マジック コマンドを使用して LLM を呼び出すことができます。

大きなモデルを備えた Jupyter

次に、それがどのように機能するかを見てみましょう。

プログラミングアシスタント

下の図は、Jupyter チャット インターフェースを示しています。ここで、ユーザーは Jupyternaut (プログラミング アシスタント) と会話することができます。 Jupyternaut 関数バーには、次のような文が表示されます。「こんにちは。私はプログラミング アシスタントの Jupyternaut です。テキスト ボックスを使用して質問することも、コマンドを使用して質問することもできます。」

次に、ユーザーは Jupyternaut に「Python のタプルとリストの違いは何ですか?」などの質問をしました。Jupyternaut は 2 つの主な違いを示して正しく回答し、最後に例を示しました。

コードによくわからない部分がある場合は、それを選択してプロンプトとして使用し、Jupyternaut にコードの説明を依頼できます。また、Jupyternaut はコードを修正したり、コードエラーを特定したりすることもできます。

コードに満足できない場合は、必要に応じて Jupyternaut にコードの書き換えを依頼することもできます。

コードを書き直した後、Jupyternaut はコードをユーザーが選択した言語モデルに送り返して置き換えます。

テキストプロンプトからノートブックを生成する

Jupyter AI のチャット インターフェースは、テキスト プロンプトに基づいて完全なノートブックを生成できます。これを行うには、ユーザーは「/generate」コマンドに続けてテキストの説明を実行する必要があります。

Jupyternaut はノートブックを生成した後、ユーザーが開いて表示できるファイル名を含むメッセージをユーザーに送信します。

ローカルファイルへのアクセス

「/learn」コマンドを使用して Jupyternaut にローカル ファイルを学習させ、「/ask」コマンドを使用してローカル ファイルに関する質問をすることができます。たとえば、「/learn」コマンドを使用すると、Jupyternaut に Jupyter AI ドキュメントについて学習させることができます。

Jupyternaut の学習が完了したら、/ask コマンドを使用して質問することができます。

マジック機能

Jupyter AI は、ノートブック セルと IPython コマンドライン インターフェイスで実行できる %%ai コマンドも提供します。各 %%ai コマンドにはモデルが必要であり、通常は provider‑id:model‑id として指定されます。

一部の研究者は %%ai マジック コマンドを試し、それを使用して ChatGPT を呼び出しました。

さらに、-f または --format パラメータを使用して、HTML、数式、ソース コード、画像などの出力形式をカスタマイズできます。これは、研究者や教育者にとって非常に便利です。

デモの後、大規模モデルをサポートする Jupyter は確かにはるかに便利であることがわかりました。試してみたい友達は行って試してみてください。

<<:  アリババクラウドは、70億のパラメータを持つTongyi Qianwen大規模モデルをオープンソース化し、無料で商用利用可能に

>>:  注目すべき新たな AI 統計とトレンド

ブログ    

推薦する

IoT と AI を組み合わせたユースケースにはどのようなものがありますか?

モノのインターネットは現代のビジネスと経済を急速に変革しています。この革新的なテクノロジーにより、膨...

西夏文字の認識を例にとると、人工知能は歴史理解にどのように役立つか

以前、チャット中に友人が人工知能についての印象を「西洋的」「商業的」「未来志向」という 3 つの言葉...

マスク氏のChatGPTバージョンが急成長中! Pythonなしで11人が2か月間懸命に働いた

マスク氏は突如行動を起こし、OpenAI開発者会議の前に大型モデルGrokをリリースした。他の Ch...

没入型環境向けロボットの開発における3つの課題

[51CTO.com 速訳] 最近、FacebookはMessengerプラットフォーム上のチャット...

AIに取り組んでいる学部生がオンラインでクラッシュ:GitHubモデルの実行に3か月かかり、難しすぎる

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

AIチップがまだ普及していないのはなぜでしょうか?

2019年、国内外の業界関係者が共同でAIチップの開発を推進しました。 7nmチップはまだ完全に展...

LeCun、Zhou Zhihua、Kai-Fu Leeらは2020年にAIに何を期待しているのでしょうか?

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

Baidu AIは素晴らしいキャンパスライフに新たなタッチを加え、新学期をより技術的に

幼少期、小学校、中学校、高校、大学に至るまで、キャンパスライフはほとんどの人にとって欠かせないもので...

中国航空工業集団の「ドラゴンネスト」の初飛行は、電力検査のインテリジェント時代の幕開けを告げる

最近、北京市南六環路の北京延尊物流園区付近の安坊線70号塔の下で、中飛Avi Dragon Nest...

...

...

人工知能時代の罠を回避し、実装を実現する方法

つい最近、カリフォルニア大学バークレー校で活躍している、インターネットで有名な無人食品配達車「Kiw...

ChatGPT に複数のバージョンのコンテンツを入力して一度に選択できるようにする方法

人工知能が進歩するにつれて、AI ツールに対する需要も高まっています。特に GPT のような高度なツ...

2020年に会話型AIはどのように発展するでしょうか?

会話型 AI は今日のイノベーションに不可欠な要素であり、多くの企業のビジネスを変革するでしょう。 ...

これを読めば分かるでしょう。これらは人工知能によって排除されつつある主要な職業です。

AIインテリジェンスは近年急速に発展しており、技術の進歩をもたらす一方で、一部の業界にも影響を与え...