Gym Anytradingに基づく強化学習の簡単な例

Gym Anytradingに基づく強化学習の簡単な例

強化学習 (RL) は近年、アルゴリズム取引の分野で大きな注目を集めています。強化学習アルゴリズムは経験から学習し、報酬に基づいてアクションを最適化するため、取引ロボットに適しています。この記事では、Gym Anytrading 環境と GME (GameStop Corp.) 取引データセットを使用して、強化学習ベースの取引ロボットを構築する方法について簡単に紹介します。

強化学習は機械学習のサブフィールドであり、エージェントが特定の目標を達成するために環境と対話することを学習します。エージェントは環境内でアクションを実行し、報酬という形でフィードバックを受け取り、時間の経過とともに累積報酬を最大化するように学習します。エージェントの目標は、状態をアクションにマッピングし、可能な限り最良の結果をもたらす最適なポリシーを見つけることです。

ジム エニトレーディング

Gym Anytrading は、OpenAI Gym 上に構築されたオープンソース ライブラリであり、さまざまな金融取引環境を提供します。これにより、さまざまな取引シナリオをシミュレートし、RL アルゴリズムを使用してさまざまな取引戦略をテストできます。

依存関係をインストールする

使用される主なライブラリは、TensorFlow、stable-baselines3、Gym Anytrading です。必要な依存関係をインストールするには、次のコードを実行します。

 !pip install tensorflow !pip install stable_baselines3 !pip install gym !pip install gym-anytrading !pip install tensorflow-gpu

ライブラリのインポート

必要なライブラリをインポートし、環境を設定して開始します。

 # Gym stuff import gym import gym_anytrading # Stable baselines - RL stuff from stable_baselines3.common.vec_env import DummyVecEnv from stable_baselines3 import A2C # Processing libraries import numpy as np import pandas as pd from matplotlib import pyplot as plt

GME取引データの読み込み

例として、GameStop Corp. (GME) の過去の取引データを使用します。 GME 取引データが CSV 形式で保存されていることを前提としています。保存されていない場合は、検索エンジンでダウンロード アドレスを見つけることができます。

GME 取引データをロードし、Gym Anytrading 環境を準備します。

 # Load GME trading data df = pd.read_csv('gmedata.csv') # Convert data to datetime type df['Date'] = pd.to_datetime(df['Date']) df.dtypes # Set Date as the index df.set_index('Date', inplace=True) df.head()

ジムを通じた取引環境の構築

次のステップは、Gym Anytrading を使用して取引環境を作成することです。環境は GME 取引データを表し、エージェントは株式の購入、売却、保有などのアクションを実行して環境と対話します。

 # Create the environment env = gym.make('stocks-v0', df=df, frame_bound=(5, 100), window_size=5) # View environment features env.signal_features # View environment prices env.prices

環境を探索する

RL モデルの構築に進む前に、環境を視覚化してその特性を理解すると役立ちます。

 # Explore the environment env.action_space state = env.reset() while True: action = env.action_space.sample() n_state, reward, done, info = env.step(action) if done: print("info", info) break plt.figure(figsize=(15, 6)) plt.cla() env.render_all() plt.show()

このグラフには、GME 取引データの一部と、Gym Anytrading 環境によって生成された売買シグナルが表示されます。


強化学習モデルの構築

stable-baselines3 ライブラリを使用して RL モデルを構築します。 A2C(Advantage Actor-Critic)アルゴリズムを使用します

# Creating our dummy vectorizing environment env_maker = lambda: gym.make('stocks-v0', df=df, frame_bound=(5, 100), window_size=5) env = DummyVecEnv([env_maker]) # Initializing and training the A2C model model = A2C('MlpPolicy', env, verbose=1) model.learn(total_timesteps=1000000)

モデルの評価

モデルをトレーニングした後、GME 取引データのさまざまな部分でそのパフォーマンスを評価できます。

 # Create a new environment for evaluation env = gym.make('stocks-v0', df=df, frame_bound=(90, 110), window_size=5) obs = env.reset() while True: obs = obs[np.newaxis, ...] action, _states = model.predict(obs) obs, rewards, done, info = env.step(action) if done: print("info", info) break plt.figure(figsize=(15, 6)) plt.cla() env.render_all() plt.show()

要約する

この投稿では、Gym Anytrading 環境と stable-baselines3 ライブラリを使用して、強化学習ベースの取引ロボットを構築する方法を紹介しました。この記事は単なる出発点にすぎません。成功するトレーディング ロボットを構築するには、さまざまな要素を慎重に検討し、継続的に改善する必要があります。


<<:  持続可能なAI: イノベーションと環境責任のバランス

>>:  Appleは、来年の製品発売を目標に、独自の大規模モデルフレームワークをベースにしたApple GPTを秘密裏に開発していると噂されている。

ブログ    
ブログ    

推薦する

...

人工知能は緊急に「倫理的転換」を必要としている

現在の人工知能の発展は、主にディープラーニングに代表される機械学習技術の恩恵を受けています。ディープ...

人工知能、VR、音声検索、従来のマーケティングモデルを変える「三銃士」

人工知能と関連技術はマーケティングの未来を変えつつあり、仮想現実 (VR)、音声検索、人工知能はマー...

...

調査によると、2024年は「AIメガネ」市場元年となる

AppleのVision Proヘッドセットは2024年第1四半期に発売される予定だが、業界の専門家...

人工知能オンライン機能システムのデータアクセス技術

[[198103]] 1. オンライン機能システム主流のインターネット製品では、古典的な計算広告、検...

世界人工知能会議の最高栄誉である2020年SAIL賞のトップ30プロジェクトが発表されました

世界人工知能会議の最高賞であるSAIL賞(スーパーAIリーダー)は、「卓越性を追求し、未来をリードす...

アメリカン・エキスプレスはAIを活用してクレジットカード詐欺を50%削減

サイバー犯罪者の目から見れば、クレジットカード会社は間違いなく最も重要な攻撃ターゲットの一つです。彼...

...

「Split Everything」のビデオ版はこちらです。数回クリックするだけで、動いている人物や物体が丸で囲まれます。

写真ビデオセグメンテーションは多くのシナリオで広く使用されています。映画の視覚効果を高めたり、自動運...

人工知能は「馴染みのものを殺す」ツールになるのでしょうか?

長い間、私の携帯電話のパッケージには主に 400 分の通話時間 + 500M のネットワーク トラフ...

機械学習アルゴリズムの新たな女王 — XGBoost

15年前の初出勤の日のことを今でも覚えています。大学院を終えて、世界的な投資銀行にアナリストとして...

AI画像合成技術の新たな波:Stable Diffusion 3とSoraアーキテクチャのブレークスルー

人工知能の黄金時代を迎え、画像合成技術はかつてない速さで発展しています。単純な画像編集から複雑なシー...

...