AIと機械学習でデータセンターを強化

AIと機械学習でデータセンターを強化

人工知能(AI)と機械学習は、インテリジェントデータセンターにおいてますます重要な役割を果たしています。

今日の企業ではデータの重要性が高まっており、ビジネスの成長を促進するために大規模なデータセットを管理および統制するには、データ管理が不可欠です。企業は、大量のデータを処理するために高度な分析および自動化ツールを活用しています。また、設備の整ったデータセンターを活用して、データをより適切に管理します。データ センターは、クラウド ストレージ アプリケーションとトランザクションをサポートしながら、シームレスなデータ バックアップおよびリカバリ機能を提供します。ビジネス データ ストレージに独自の機能を提供するため、企業はデータ センター インフラストラクチャの改善に人工知能や機械学習などの新興テクノロジーを活用しています。

[[378692]]

機械学習は、大量のデータを調べてパターンを見つけることができる人工知能の高度なサブセットです。計画と設計、稼働時間の維持、IT ワークロードの管理、コストの制御など、データ センター運用のあらゆる側面を最適化する可能性があります。人工知能と機械学習は、データセンターの効率を劇的に向上させると期待されています。 IDC によると、データセンター内の IT 資産の 50% は、組み込みの AI 機能により自律的に動作するようになります。

人工知能と機械学習がスマートデータセンターを強化

データ センターは、単なるストレージ施設から重要なビジネス IT インフラストラクチャへと進化しました。データ センターは大規模なスーパーコンピュータと見なされているため、最新のデータ センターでは複数のサーバーを使用して、処理能力とコンピューティング能力をさらに最適化し、向上させています。今日、ほぼすべての組織は、毎日大量の情報を処理するためにデータ センターを必要としています。

人工知能や機械学習などのテクノロジーがさまざまなコンピューティング アプリケーションに導入され始めており、企業のデータ センター管理に革命をもたらしています。 AI データ センターは、企業がデータに基づいた意思決定を行うのに役立ちます。また、組織が増大するデータ ストレージと処理の要件に先手を打つことにも役立ちます。データセンターはサイバー脅威に対して脆弱であるため、データセンターの AI はデータ セキュリティを大幅に向上させることができます。このテクノロジーは、ネットワーク内の正常な動作を識別し、ネットワーク内の異常や逸脱に基づいてネットワーク リスクを検出します。データ センターの AI により、複雑な計算の管理が簡素化され、データ処理センターが自律的かつ効率的に動作できるようになります。

機械学習を活用したシステムを使用すると、予測保守や予防保守に役立つ可能性があります。エネルギー効率を改善し、温度を制御し、冷却システムを調整することで、冷却効率を高めることができます。電気コストはデータセンター インフラストラクチャの重要な要素であるため、エネルギー消費の最適化は常に最優先事項です。

エネルギーコストは毎年約10%上昇しており、その結果、キロワット時あたりのコストも高くなっています。米国だけでも、データセンターは毎年 900 億キロワット時を超える電力を消費しています。世界中のデータセンターでは推定 416 テラワットの電力が使用されており、使用量は世界的に増加しています。それでも、AI と機械学習は、企業のデータセンターにおけるエネルギー使用に数多くのメリットをもたらすことができます。たとえば、検索エンジンの Google は、データセンターに AI テクノロジーを適用してエネルギーを効率的に使用し、エネルギー消費を 40% 削減しました。

AI と機械学習は、サーバーのパフォーマンス、ネットワークの輻輳、ディスクの使用率を監視して、データの停止を検出し予測するためにも使用できます。その結果、AI と機械学習の革命により、データセンターのインフラストラクチャが強化され、よりスマートで自動化されたデータ管理が可能になります。

<<:  PyTorch ガイド: ディープラーニング モデルのトレーニングを高速化する 17 のヒント!

>>:  OpenAI は機械学習をサポートするために k8s を 7,500 ノードに拡張

ブログ    

推薦する

Google の覇権は崩壊するのか?支配から疑惑へ:20年間インターネットのトレンドを形作ってきたGoogle検索は謎に包まれている

Googleで最初に出てくるのは、スタンフォード大学の元学長ゲルハルト・カスパーの名前です。 199...

GoogleとOpenAIがマシンビジョンアルゴリズムをより良く研究するための新しいツールを開発

AIの世界はどのようなものになるのでしょうか?研究者たちは何十年もの間、これに困惑してきましたが、近...

AIが建物の運営に及ぼす影響

昨年、ChatGPT とその他の AI 搭載サービス エンジンがリリースされて以来、このテクノロジー...

電流制限アルゴリズムを理解すれば十分です。

TL;DR (長すぎるので読まないでください)現在の制限アルゴリズム: カウンター、スライディング...

...

...

年次レビュー: 2017 年の「愚かな」 AI 製品 8 つ

2017年は「人工知能実装元年」と言われています。 AIは人々の生活の隅々にまで浸透しており、AIハ...

機械学習の成功事例 5 つ

人工知能と機械学習は企業の世界で注目を集めており、組織はますますこれらのテクノロジーを活用して顧客の...

...

...

膨大な顔情報が収集されている: 315 Galaが顔認識の混乱を暴露

3月15日、毎年恒例のCCTV Finance 3.15 Galaが開催されています。序文から判断す...

[トイレに座ってアルゴリズムを読む] アルゴリズム 8: 賢い隣接リスト (配列の実装)

前回は、空間と時間の複雑さがともにN 2であるグラフの隣接行列保存方法を紹介しました。今回は、グラフ...

クラウドで必要な 5 つの機械学習スキル

機械学習と AI は IT サービスにさらに深く浸透し、ソフトウェア エンジニアが開発したアプリケー...

インタープリタパターンを使用して、要素のXPathパスを取得するためのアルゴリズムを実装します。

[[432233]]文章1. 通訳モード言語に対して、その文法表現(言語のルールを定義するために使...

...