未来のあなたは「透明」です!コンピューターは人間の脳信号から思考を予測し、最大83%の精度で人間の脳画像を復元します。

未来のあなたは「透明」です!コンピューターは人間の脳信号から思考を予測し、最大83%の精度で人間の脳画像を復元します。

最近、ヘルシンキ大学の研究者らは、脳信号を監視することでコンピューターが視覚知覚をシミュレートできる技術を開発し、神経適応生成モデルを提案した。

マスク氏の脳コンピューターインターフェースは十分クレイジーではないでしょうか?

[[343854]]

ヘルシンキ大学の研究者らは、脳信号を監視することでコンピューターが視覚知覚をシミュレートできる技術を開発した。

ある意味では、コンピューターは人々が何を考えているのかを予測しようとしており、これにより、コンピューターはこれまで見たことのない架空の画像など、まったく新しい情報を生成できるようになります。

この研究成果は9月7日、ネイチャー誌に掲載された。

ニューラル適応生成モデル: 脳信号に一致するグラフィックスを生成する

ヘルシンキ大学で研究されている技術は、新しいタイプの脳コンピューターインターフェースに基づいています。これまでの同様の脳コンピューターインターフェースは、個々の文字を綴ったりカーソルを動かしたりするなど、脳からコンピューターへの一方向の通信を行うことができました。

[[343855]]

この新たな研究は、人工知能の手法を使用して、情報のコンピューター表現と脳信号の両方を同時にモデル化した初めての研究です。被験者が注目する視覚的特徴に一致する画像は、人間の脳の反応と生成ニューラル ネットワークの相互作用を通じて生成されます。

[[343856]]

研究者たちはこのアプローチを「神経適応型生成モデリング」と呼んでいます。この技術の有効性を評価するために、合計 31 人のボランティアがこの研究に参加しました。

参加者の脳波(EEG)を記録しながら、研究者らはAIが生成した見た目の異なる人々の画像を何百枚も参加者に見せた。研究者らは被験者に、老けて見える顔や笑っている顔など、特定の特徴に注目するよう依頼した。

被験者が次々と素早く提示される顔の画像を見ている間、被験者の脳波がニューラルネットワークに送られ、脳がいずれかの画像を被験者が探していたものと一致するものとして検出したかどうかを推測しました。

この情報に基づいて、ニューラル ネットワークは、その人が考えている顔がどのようなものか推定値を調整します。最終的に、コンピューターは生成された画像が被験者が想像した特徴とほぼ正確に一致すると評価し、実験ではその精度は 83 パーセントでした。

ヘルシンキ大学フィンランドアカデミーの研究者で、コペンハーゲン大学の准教授でもあるトゥッカ・ルオツァロ氏は、「この技術は、人間の自然な反応と、新しい情報を作成するコンピューターの能力を組み合わせたものです。実験では、被験者はコンピューターが作成した画像を見るように求められただけです。コンピューターは、表示された画像と、画像に対する人間の反応をモデル化しました。画像は、人間の脳の反応に関する情報を使用して生成されました。これにより、コンピューターは、ユーザーが考えていることと一致するまったく新しい画像を作成できます。」と述べています。

焦点に注意を払い、何について考えているかを予測する

ニューラル適応生成モデリングは、次の 3 つの原則に基づいています。

1. 生成: 生成モデルは、知覚入力として使用されるデジタル情報を生成します。

2. 知覚: オペレーターはコンピューターが生成した知覚入力を認識し、それに応答します。

3. 適応 (Adapat): タスクの関連性は脳の反応から推測され、潜在的生成モデルの位置判断を更新します。

[[343857]]

人間の顔の画像を生成することは、この技術の潜在的な応用例のほんの一例にすぎません。この研究の具体的な利点の 1 つは、コンピューターが人間の創造性を高めることができることです。

何かを描いたり説明したりしたいのにそれができない場合、コンピューターがそれを手助けしてくれるかもしれないとルオツァロ氏は言う。あなたの注意がどこに集中しているかを観察し、何を作りたいかを予測します。

研究者たちは、この技術が脳の知覚とその根底にあるプロセスの理解に利用できる可能性があると考えている。

上級研究員のミヒール・スパペ氏は、心理学の観点からも興味深いと考えている。

「この技術は人の思考を認識するのではなく、むしろ私たちの心理的なつながりに反応するのです。

被験者が思い浮かべた特定の老人の正体を知ることはできないが、彼らの考えが老齢に関連していたことは分かるかもしれない。したがって、これは社会的、認知的、感情的なプロセスを理解するための新たな道を提供する可能性があると私たちは考えています。 「

<<:  あなたの AI モデルにはどのようなセキュリティ上の問題がありますか? AI 攻撃と防御の「辞書」ですべて見つけることができます

>>:  機械学習におけるラベル漏洩とそれがモデルのパフォーマンスに与える影響について紹介します

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

近年、「人工知能」が私たちの生活に静かに登場している

科学技術と産業技術の継続的な発展により、私たちの生活は大きく向上し、「人工知能」という言葉も徐々に私...

IoT生体認証は職場でより大きな役割を果たす

組織はセンサーや監視を通じて職場のセキュリティと従業員の安全性を向上させるために生体認証を使用できま...

収集する価値のあるAIツールメモ8つ

緊急時のメモとしても使える、コレクションする価値のあるAI写真を8枚シェアします。最初の RTF フ...

...

2021年4月のロボット工学分野の重要な動向の概要

ポスト疫病時代において、国内ロボット市場は急速に発展しました。一方、ロボット工学の分野は好調な勢いを...

...

AIが建物の快適性に革命を起こす

商業ビルでは、顧客と居住者の快適性がポジティブな体験を保証するために重要です。快適さの重要な要素は、...

指先で操作できる人工知能(基礎編)

人工知能の概念知能は知識と知性の総和です。知識はすべての知的行動の基礎であり、知能は知識を獲得し、そ...

...

Ant Group の大規模セマンティック知識管理における主要技術と実践

1. Ant Financial Knowledge Graph プラットフォームの紹介まず、ナレッ...

中国の科学者によるこの命を救うAIは海外のホットリストに載った

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...