ゲームの背後にあるAIストーリー:小規模サンプル学習と転移学習

ゲームの背後にあるAIストーリー:小規模サンプル学習と転移学習

2019年、人間と機械のゲームバトルにおいて、Open AI Fiveが圧倒的なパフォーマンスでDota2世界チャンピオンチームOGを破りました。

[[344878]]

ボードゲームは長い間、人間の知能と人工知能の最高峰の試金石と考えられてきました。

人工知能と人間のチェスプレイヤーの対決は絶え間なく続いています。三目並べ、碁盤、チェッカー、将棋、軍事将棋、国際将棋から、囲碁の最高レベルのゲームまで、コンピューターの人工知能プログラムは人間を打ち負かしてきました。

[[344879]]

人工知能の成果は目を見張るものがあります。少なくともゲームの分野では、完全に人間を圧倒しています。

しかし、この驚くべきパフォーマンスの背後には、人間の能力をはるかに超えたビッグデータ トレーニングの結果があります。Open AI Five のトレーニングを例にとり、その学習プロセスでどれだけのリソースが消費されるかを見てみましょう。

128,000 個の CPU;

256 P100;

数ヶ月のトレーニング…

[[344880]]

より理解しやすいデータに変換すると、ゲームプレイヤーが同じ結果を得るために 45,000 年間昼夜を問わずゲームを練習することに相当します。

現在の人間の寿命と思考能力を考えると、これは明らかに決して達成できない課題です。

これは現在人工知能業界、特にディープラーニングの分野が直面している最大の問題と課題の 1 つであり、主に次のものが含まれます。

データへの依存度が高い。

長期にわたる研究と訓練。

ソフトウェアとハ​​ードウェアのトレーニング コストが高額です...

それで、解決策は何でしょうか?

2020年に、学術界は因果関係の小サンプル学習という概念を提案しました。

小規模サンプル学習を実行するにはどうすればよいでしょうか?実際、この概念は、数年前に楊強教授(現WeBank最高人工知能責任者)と戴文元氏(現Fourth Paradigm CEO)が提唱した転移学習の概念と非常によく似ています。

小サンプル学習も転移学習も、人間を模倣し、人間がさまざまな知識を素早く学習する様子を見る学習と言えます。

ゲームをプレイすることを例に挙げてみましょう。

StarCraft ゲーム シリーズには、Terran、Protoss、Zerg の 3 つの種族と数十の軍事ユニットが含まれており、戦略から戦術まで何千もの異なるプレイ スタイルに進化できます。このゲームでは、最後の瞬間まで誰が勝つか負けるかを予想するのが難しいことがよくあります。そのため、人工知能を「育成」することに重点を置いたリアルタイム戦略バトルゲームにもなっています。

リアルタイム戦略ゲームが好きな人にとって、StarCraft シリーズのゲームをプレイできれば、Blizzard の Warcraft、DOTA2 シリーズ、Microsoft の Age of Empires シリーズなどの他のリアルタイム戦略ゲームも簡単に始めることができます。

同じタイプのゲームをプレイする際には、以前のゲーム体験を適用できるため、ゲームの背後にあるアイデアや方法は似ています。つまり、1 つの事例から推論を引き出し、それを別の事例に適用できるということです。

同様に、機械学習の場合、少数のサンプルを迅速に一般化するための鍵は、事前の知識(人間の経験に類似)を使用することです。

小規模サンプル学習は、非常に少ないトレーニング データ (1 ~ 5 個のサンプル/クラス) を通じてモデルの一般化 (機械学習アルゴリズムが新しいサンプルに適応する能力) を実現することに専念しています。

ここで、機械学習における「 事前トレーニング」の概念についても触れておく必要があります。

具体的には、次のような大規模なデータセットの特徴抽出器として強力なニューラル ネットワークを学習することです。

CV(コンピュータービジョン)で一般的な ImageNet で事前トレーニングされた ResNet ネットワーク。

NLP (自然言語処理) で Wikipedia で事前トレーニングされた BERT。

これらはすべて、事前トレーニングである特徴表現の事前知識を表します。

転移学習における「 クーパー学習サークル」理論も同様の原理に基づいています。

事前トレーニングは、人が授業の前に大量の知識ポイントを事前に確認するのと同じように、小さなサンプルに学習の良い出発点を与えることに相当します。

もちろん、より良い結果を達成したい場合は、メタ学習の概念も理解する必要があります。簡単に言えば、継続的な学習を通じて、より良い結果をもたらす機械学習の方法を見つけることです。

つまり、 人工知能と機械学習とは、簡単に言えば、人間の思考を継続的に学習し、模倣するプロセスです。

人工知能についてさらに詳しく知るには、Dongfang Linyu をフォローしてください。

添付ファイル:

少数ショット学習論文が NeurIPS 2020 に採択されました

介入型少数ショット学習は、以下から入手可能です。

https://arxiv.org/abs/2009.13000

論文のコードは Github でオープンソースとして公開されています。

https://github.com/yue-zhongqi/ifsl

<<:  アルゴリズムの微積分: 面接で目立つための関数微分公式 5 つ

>>:  5歳の子供がAIを圧倒、「遊ぶ」だけで十分か?

ブログ    
ブログ    

推薦する

...

Pika 1.0 はアニメーション業界に完全な革命をもたらします!ドリームワークスの創設者は、3年後にはアニメーションのコストが10分の1に下がると予測

最近、ドリームワークスの創設者ジェフリー・カッツェンバーグ氏は、生成AIの技術がメディアとエンターテ...

一般相対性理論の予測に沿って、M87ブラックホールの最新の研究結果がネイチャー誌に掲載されました。

9月27日、ネイチャー誌は45の機関からなる国際科学研究チームの最新の研究成果を発表した。 200...

...

...

Dharma AI Labが3つのスマートデバイスをリリース、Tmall Genieがオンラインに

アリババのダルマ人工知能研究所は最近、深セン衛星テレビと共同で「Show AI Life」という新製...

AI 導入を迅速に進める 5 つの方法

重要な実現技術である AI の急速な成功により、より広範なデジタル変革とイノベーションの取り組みへの...

第4世代移動ロボット:凌東科技V-AMRのグローバル発売と投資促進

8月26日、北京の中関村国家自主革新モデル区展示センターで、玲東科技マックスの新製品発表会およびチャ...

ライフル銃で動くロボット犬の発明者が恐怖を巻き起こす:プログラミング制御は恐れる必要はない

[[429985]]先週、米国陸軍協会(AUSA)の会議がワシントンで開催されました。アメリカのロボ...

世界のトラフィック量上位50のAIウェブサイトが発表:ChatGPTなどの会話型製品が目立ち、ユーザーは主にライトな体験を利用

米国のベンチャーキャピタル企業a16zは10月9日、Cエンドユーザーに公開されている現在市場に出回っ...

VR時代、eスポーツは新たな輝きを放つ

[51CTO.comからのオリジナル記事] 2015年以降、仮想現実(VR)業界は急速に発展しました...

科学者たちは、脳波を3%という低いエラー率で直接テキストに変換する「心を読む」方法を開発した。

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

...

人工知能技術の到来。デジタル変革をどう理解するか?

科学技術の進歩により、人間は肉体的な力から機械の代替まで、自然を変革する能力を獲得し、現在では人工知...

没入型テクノロジーが製造業を変える 5 つの方法

[[397046]]画像ソース: https://pixabay.com/images/id-450...