畳み込みニューラルネットワークにおける自己注意メカニズムの理解

畳み込みニューラルネットワークにおける自己注意メカニズムの理解

導入

コンピューター ビジョンにおけるエンコーダー/デコーダー アーキテクチャの制限とそれを改善する方法。

[[342535]]

畳み込みニューラル ネットワーク (CNN) は、ディープラーニングやコンピューター ビジョン アルゴリズムで広く使用されています。多くの CNN ベースのアルゴリズムは業界標準を満たしており、商用製品に組み込むことができますが、標準の CNN アルゴリズムにはまだ制限があり、多くの面で改善の余地があります。この投稿では、セマンティック セグメンテーションとエンコーダー/デコーダー アーキテクチャを例として説明し、その限界と、自己注意メカニズムが問題の軽減に役立つ理由を説明します。

標準コーデックアーキテクチャの制限

図1: 標準コーデックの構造

デコーダー アーキテクチャ (図 1) は、多くのコンピューター ビジョン タスク、特にセマンティック セグメンテーション、深度予測、一部の GAN 関連の画像ジェネレーターなどのピクセル レベルの予測タスクにおける標準的なアプローチです。エンコーダー/デコーダー ネットワークでは、入力画像が畳み込まれ、アクティブ化され、プールされて潜在ベクトルが得られ、その後、入力画像と同じサイズの出力画像に復元されます。アーキテクチャは対称的で、慎重に設計された畳み込みブロックで構成されています。このアーキテクチャは、そのシンプルさと正確さから広く使用されています。

図2: 畳み込み計算

しかし、畳み込みの計算をさらに詳しく調べると (図 2)、エンコーダー/デコーダー アーキテクチャの限界が明らかになります。たとえば、3x3 畳み込みでは、畳み込みフィルターには 9 つのピクセルがあり、対象ピクセルの値は、そのピクセル自体と周囲の 8 ピクセルのみを参照して計算されます。つまり、畳み込みではターゲット ピクセルを計算するためにローカル情報のみを使用できるため、グローバル情報は表示されないため、多少のバイアスが生じる可能性があります。この問題を緩和する単純な方法がいくつかあります。より大きな畳み込みフィルターを使用するか、より多くの畳み込み層を持つより深いネットワークを使用することです。ただし、計算オーバーヘッドはますます大きくなり、結果は大幅に改善されません。

分散と共分散を理解する

分散と共分散はどちらも統計学と機械学習における重要な概念です。これらはランダム変数に対して定義されます。名前が示すように、分散は単一のランダム変数の平均からの偏差を表しますが、共分散は 2 つのランダム変数間の類似性を表します。 2 つのランダム変数が類似した分布を持つ場合、それらの共分散は大きくなります。それ以外の場合、共分散は小さくなります。特徴マップ内の各ピクセルをランダム変数として扱い、すべてのピクセル間のペアワイズ共分散を計算すると、画像内の他のピクセルとの類似性に基づいて、予測される各ピクセルの値を強めたり弱めたりすることができます。トレーニングと予測中に類似のピクセルを使用し、類似しないピクセルは無視します。このメカニズムは自己注意と呼ばれます。

式1: 2つのランダム変数XとYの共分散

CNNにおける自己注意メカニズム

図3: CNNにおける自己注意メカニズム

各ピクセルレベルの予測に対するグローバル参照を実現するために、WangらはCNNにおける自己注意メカニズムを提案しました(図3)。彼らのアプローチは、予測されたピクセルと他のピクセル間の共分散に基づいており、各ピクセルをランダム変数として扱います。関与するターゲット ピクセルは、すべてのピクセル値の加重合計に過ぎず、重みは各ピクセルのターゲット ピクセルに対する関連性です。

元の図 3 を図 4 のように簡略化すると、メカニズムにおける共分散の役割を簡単に理解できます。まず、高さ H、幅 w の特徴マップ X を入力し、X を 3 つの 1 次元ベクトル A、B、C に再形成し、A と B を乗算してサイズ HWxHW の共分散行列を取得します。最後に、共分散行列に C を掛けて D を取得し、それを再形成して出力特徴マップ Y を取得し、入力 X から残差接続を実行します。ここで、D の各項は入力 X の加重合計であり、重みはピクセル間の共分散です。

自己注意メカニズムを利用することで、モデルのトレーニングと予測中にグローバル参照を実現できます。このモデルはバイアスと分散のトレードオフが良好であるため、より合理的です。

ディープラーニングへの解釈可能なアプローチ

図5: SAGANにおける解釈可能な画像生成

SAGAN は、自己注意メカニズムを GAN フレームワークに組み込みます。ローカル領域ではなくグローバル参照を通じて画像を生成できます。図 5 では、各行の左側の画像は色を使用してサンプリングされたクエリ ポイントを表し、残りの 5 つの画像は各クエリ ポイントに対応するフォーカス領域です。空や葦の茂みなどの背景のクエリ ポイントの場合、関心領域は広く、クマの目や鳥の脚などの前景のクエリ ポイントの場合、関心領域は局所的であることがわかります。

<<:  DAMOアカデミー物流ロボットQA

>>:  コロナウイルス:スマートシティ変革のきっかけ

ブログ    
ブログ    
ブログ    

推薦する

データの品質は機械学習を成功させる鍵です

翻訳者 | 張毅校正 | 梁哲、孫淑娟出典: frimufilms が作成したビジネス写真 - ww...

コンピューティングパワーがボトルネックにならないように、Xiaohongshu の機械学習の異種ハードウェア推論を最適化する方法

多くの企業が GPU コンピューティング能力の開発を組み合わせて、自社の機械学習の問題に対するソリュ...

人工知能のもう一つの方向性:メモリスタに基づくストレージおよびコンピューティング技術

[[325184]]この記事はLeiphone.comから転載したものです。転載する場合は、Leip...

...

Python に基づく簡単な自然言語処理の練習

Python によるシンプルな自然言語処理この記事は、Python をベースにした簡単な自然言語処理...

基本的なアルゴリズムの学習ルートとランダムな考え

勉強計画(いつも顔を叩かれるような気分です)煙台での仕事を辞めて北京に来ました。アルゴリズムが苦手だ...

...

人工知能があなたの好きな家を見つけるお手伝いをします

潜在的な購入者が住宅を閲覧したり、オンラインで検索したりする際に、エージェントやブローカーによる物件...

Baidu Create 2019 Baidu AI 開発者カンファレンス Li Yanhong の素晴らしい名言

7月3日に開催されたBaidu Create 2019 Baidu AI Developer Con...

ディープラーニングの分散トレーニングにおける大きなバッチサイズと学習率の関係をどのように理解すればよいでしょうか?

[[207640]]この記事は、Zhihu の質問「ディープラーニングの分散トレーニングにおける大...

物流でGenAIを効果的に活用するための鍵は、ユースケースを理解することです。

GenAI を商品輸送という主要機能にどのように適用できるかは最初は明確ではないかもしれませんが、...

爆発的なソラの背後にある技術、拡散モデルの最新の開発をレビューする記事

機械が人間の想像力を持てるようにするために、深層生成モデルは大きな進歩を遂げました。これらのモデルは...

2018 年に知っておくべき 15 の人工知能統計

人工知能(AI)は日々驚異的な速度で成長しており、それに伴い、さまざまな業界を取り巻く統計も変化して...

人工知能で最も人気のあるアルゴリズムトップ10をわかりやすく解説

機械学習は業界にとって革新的で重要な分野です。機械学習プログラムに選択するアルゴリズムの種類は、達成...

ChatGPTの背後にある技術的進化を分析する

1. 自然言語理解と言語モデル1.1 自然言語処理自然言語処理 (NLP) は人工知能 (AI) の...