AIoT分野におけるセキュリティリスクを知っておく必要があります!

AIoT分野におけるセキュリティリスクを知っておく必要があります!

現在、AI医療、スマートホーム、自動運転、スマート取引などの人工知能の発展は、企業のビジネスモデルを絶えず覆し、私たちのライフスタイルを変えています。中国科学院院士で上海交通大学副学長の毛俊法氏は、人工知能は「加速器」として、医療、金融、交通、報道などさまざまな業界を巻き込み、伝統的な産業が直面する問題を効果的に解決し、大量のデータの価値を十分に発揮させ、伝統的な産業の発展に力を与えることができると述べた。

「人工知能の発展の本質は、アルゴリズム、コンピューティングパワー、データを通じて、完全な情報と構造化された環境における決定論的な問題を解決することです。」毛俊法氏は、アルゴリズム、コンピューティングパワー、データのさらなる発展により、あらゆるものがインテリジェントになる時代の到来が必然的に加速され、人工知能がさまざまなシナリオに力を与えるための重要なチャネルが開かれ、あらゆるものの相互接続が実現されると考えています。

しかし、人工知能が人間の生産と生活に役立ち、力を与える一方で、無視できないセキュリティリスクももたらすことは否定できません。

[[338325]]

【AIセキュリティ問題の分類】

1. データリスク

1. 「データ汚染」

いわゆる「データ汚染」とは、AI トレーニング データの汚染によって AI の意思決定エラーが発生することを指します。偽装データや悪意のあるサンプルなどをトレーニング データに追加すると、データの整合性が損なわれ、トレーニングされたアルゴリズム モデルの意思決定に逸脱が生じます。

攻撃には主に 2 つの種類があります。

  • 1 つは、モデル スキューイングを使用することです。この場合、攻撃対象はトレーニング データ サンプルであり、分類器の分類境界を変更する目的は、トレーニング データを汚染することによって達成されます。
  • もう 1 つは、フィードバックによる誤認攻撃手法です。この場合、攻撃のターゲットは人工知能学習モデル自体です。モデルのユーザー フィードバック メカニズムを使用して攻撃を開始し、偽装されたデータや情報を直接モデルに「注入」して、人工知能を誤認させ、誤った判断をさせます。

「データポイズニング」は、特に自動運転の分野では極めて有害であり、車両が交通規則に違反したり、交通事故を引き起こしたりする可能性があります。

2. データ漏洩

一方、逆攻撃はアルゴリズム モデル内でのデータ漏洩につながる可能性があります。

一方、人工知能技術はデータマイニングや分析機能を強化し、プライバシー漏洩のリスクを高める可能性があります。例えば、さまざまなスマートデバイス(スマートブレスレットやスマートスピーカーなど)やスマートシステム(生体認証システムやスマート医療システムなど)、人工知能デバイスやシステムは、個人情報をより直接的かつ包括的に収集します。人工知能アプリケーションによって収集される情報には、顔、指紋、声紋、虹彩、心拍、遺伝子など、強い個人属性を持つものが含まれます。この情報は固有かつ不変であり、漏洩や悪用があった場合は深刻な結果を招くことになります。

3. データの異常

運用フェーズでのデータ異常はインテリジェント システムの動作エラーにつながる可能性があり、モデル盗難攻撃はアルゴリズム モデルのデータを逆に復元する可能性があります。さらに、オープンソースの学習フレームワークはセキュリティ上のリスクをもたらし、人工知能システムでのデータ漏洩につながる可能性もあります。

2. アルゴリズムリスク

  • 画像認識や画像偽装はアルゴリズムの問​​題を引き起こす可能性があります。例えば、自動運転では、Google も研究を行っています。モデル ファイルがハッカーによって悪意を持って変更され、学習に使用された場合は、まったく異なる結果が生成されます。
  • アルゴリズムの設計または実装におけるエラーにより、意図しない結果、さらには有害な結果が生じる可能性があります。
  • アルゴリズムには潜在的な偏見や差別が含まれており、不公平な意思決定結果につながる可能性があります。
  • アルゴリズムのブラックボックスにより AI の決定が説明不可能になり、監督とレビューのジレンマが生じます。
  • ノイズやバイアスを含むトレーニング データは、アルゴリズム モデルの精度に影響を与える可能性があります。

3. ネットワークリスク

  • 人工知能は必然的にネットワーク接続を導入し、ネットワーク自体のセキュリティリスクも AI を深いリスクの穴に陥れることになります。
  • 人工知能技術自体もサイバー攻撃の知能レベルを向上させ、インテリジェントなデータ盗難を実行することができます。
  • 人工知能を使用すると、ターゲットを自動的にロックオンし、データ身代金攻撃を実行できます。人工知能技術は、機能ライブラリを学習することでシステムの脆弱性を自動的に検出し、主要なターゲットを特定し、攻撃の効率を向上させます。
  • 人工知能は、分析システムを攻撃するために大量の偽の脅威情報を自動的に生成する可能性があります。人工知能は、機械学習、データマイニング、自然言語処理などの技術を使用してセキュリティビッグデータを処理することで、脅威インテリジェンスを自動的に生成できます。攻撃者は、関連技術を使用して大量の偽のインテリジェンスを生成し、判断を混乱させることもできます。
  • 人工知能は画像認証コードを自動的に識別し、システムデータを盗むことができます。画像認証コードは、ロボット アカウントが Web サイトやサービスを悪用するのを防ぐための一般的な認証手段ですが、人工知能は学習を通じてこの認証手段を無効にすることができます。

IV. その他のリスク

ファイルの処理、ネットワーク プロトコル、さまざまな外部入力プロトコルに関する問題など、サードパーティ コンポーネントに問題がある可能性もあります。ハッカーに悪用された場合、壊滅的な被害をもたらすことになります。

[[338326]]

[簡単に言えば、セキュリティ検証がいかに強力であっても、結局のところそれは単なるデータの文字列です。]

人工知能の時代においては、データセキュリティも多くの新たな課題に直面していることを私たちは明確に認識しなければなりません。データセキュリティとアルゴリズムセキュリティの保護は、企業にとって最優先事項となっています。

<<:  AIは自メディア記事の質を知っている。これがWeChatの自動評価アルゴリズムだ

>>:  オタクなおじさんが独学でAIを学んでマスターレベルを作成し、Twitterで人気になった

ブログ    
ブログ    
ブログ    

推薦する

Pika 1.0 はアニメーション業界に完全な革命をもたらします!ドリームワークスの創設者は、3年後にはアニメーションのコストが10分の1に下がると予測

最近、ドリームワークスの創設者ジェフリー・カッツェンバーグ氏は、生成AIの技術がメディアとエンターテ...

...

...

「ロボット」は詐欺の標的になり得るのか?

機械は識別や配送などの一連の機能を統合した後、自然に俳優と「対話」します。相互作用のプロセスにおける...

AIキーストロークパターン検出によるパスワードの認識を防ぐ方法

著者: Vision NP翻訳者:陳俊レビュー丨Chonglou最近、比較的隠れていたネットワーク ...

法律、AIが革命を起こすもう一つの業界

[[270591]]弁護士は、法律知識、鋭敏な時間管理、説得力、雄弁さなど、多くのスキルを身につけて...

AIの未来: データだけでは不十分

特定の問題を解決するための最適な技術としての人工知能 (AI) に対する熱意は否定できず、注目に値し...

BAT や他の人たちは人工知能に関してどのようなことを話しましたか?

9月17日、上海の西外灘で2018年世界人工知能大会が正式に開幕した。ジャック・マー、ポニー・マー...

DeepMindがニューラルネットワークと強化学習ライブラリをリリース、ネットユーザー:JAXの開発を促進

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

多くの場所で違法な顔認識を禁止する法律が制定されています。ビッグデータは個人にどのような悪影響を及ぼすでしょうか?

先月、個人情報保護のため、「ヘルメットをかぶって家を眺める」男性の短い動画がネット上で拡散され、ネッ...

...

人工知能が再び警告を発する!研究者は懸念している:将来、研究者が全てを支配することになる

人間と超人工知能の関係の発展は、長年にわたり話題となっている。少し前に、「人工知能研究ジャーナル」で...

機械学習における不均衡なクラスに対処するための 5 つの戦略

クラスの不均衡: 希少疾患の機械学習データセット(陽性が約 8%)があるとします。この場合、トレーニ...