AIoT分野におけるセキュリティリスクを知っておく必要があります!

AIoT分野におけるセキュリティリスクを知っておく必要があります!

現在、AI医療、スマートホーム、自動運転、スマート取引などの人工知能の発展は、企業のビジネスモデルを絶えず覆し、私たちのライフスタイルを変えています。中国科学院院士で上海交通大学副学長の毛俊法氏は、人工知能は「加速器」として、医療、金融、交通、報道などさまざまな業界を巻き込み、伝統的な産業が直面する問題を効果的に解決し、大量のデータの価値を十分に発揮させ、伝統的な産業の発展に力を与えることができると述べた。

「人工知能の発展の本質は、アルゴリズム、コンピューティングパワー、データを通じて、完全な情報と構造化された環境における決定論的な問題を解決することです。」毛俊法氏は、アルゴリズム、コンピューティングパワー、データのさらなる発展により、あらゆるものがインテリジェントになる時代の到来が必然的に加速され、人工知能がさまざまなシナリオに力を与えるための重要なチャネルが開かれ、あらゆるものの相互接続が実現されると考えています。

しかし、人工知能が人間の生産と生活に役立ち、力を与える一方で、無視できないセキュリティリスクももたらすことは否定できません。

[[338325]]

【AIセキュリティ問題の分類】

1. データリスク

1. 「データ汚染」

いわゆる「データ汚染」とは、AI トレーニング データの汚染によって AI の意思決定エラーが発生することを指します。偽装データや悪意のあるサンプルなどをトレーニング データに追加すると、データの整合性が損なわれ、トレーニングされたアルゴリズム モデルの意思決定に逸脱が生じます。

攻撃には主に 2 つの種類があります。

  • 1 つは、モデル スキューイングを使用することです。この場合、攻撃対象はトレーニング データ サンプルであり、分類器の分類境界を変更する目的は、トレーニング データを汚染することによって達成されます。
  • もう 1 つは、フィードバックによる誤認攻撃手法です。この場合、攻撃のターゲットは人工知能学習モデル自体です。モデルのユーザー フィードバック メカニズムを使用して攻撃を開始し、偽装されたデータや情報を直接モデルに「注入」して、人工知能を誤認させ、誤った判断をさせます。

「データポイズニング」は、特に自動運転の分野では極めて有害であり、車両が交通規則に違反したり、交通事故を引き起こしたりする可能性があります。

2. データ漏洩

一方、逆攻撃はアルゴリズム モデル内でのデータ漏洩につながる可能性があります。

一方、人工知能技術はデータマイニングや分析機能を強化し、プライバシー漏洩のリスクを高める可能性があります。例えば、さまざまなスマートデバイス(スマートブレスレットやスマートスピーカーなど)やスマートシステム(生体認証システムやスマート医療システムなど)、人工知能デバイスやシステムは、個人情報をより直接的かつ包括的に収集します。人工知能アプリケーションによって収集される情報には、顔、指紋、声紋、虹彩、心拍、遺伝子など、強い個人属性を持つものが含まれます。この情報は固有かつ不変であり、漏洩や悪用があった場合は深刻な結果を招くことになります。

3. データの異常

運用フェーズでのデータ異常はインテリジェント システムの動作エラーにつながる可能性があり、モデル盗難攻撃はアルゴリズム モデルのデータを逆に復元する可能性があります。さらに、オープンソースの学習フレームワークはセキュリティ上のリスクをもたらし、人工知能システムでのデータ漏洩につながる可能性もあります。

2. アルゴリズムリスク

  • 画像認識や画像偽装はアルゴリズムの問​​題を引き起こす可能性があります。例えば、自動運転では、Google も研究を行っています。モデル ファイルがハッカーによって悪意を持って変更され、学習に使用された場合は、まったく異なる結果が生成されます。
  • アルゴリズムの設計または実装におけるエラーにより、意図しない結果、さらには有害な結果が生じる可能性があります。
  • アルゴリズムには潜在的な偏見や差別が含まれており、不公平な意思決定結果につながる可能性があります。
  • アルゴリズムのブラックボックスにより AI の決定が説明不可能になり、監督とレビューのジレンマが生じます。
  • ノイズやバイアスを含むトレーニング データは、アルゴリズム モデルの精度に影響を与える可能性があります。

3. ネットワークリスク

  • 人工知能は必然的にネットワーク接続を導入し、ネットワーク自体のセキュリティリスクも AI を深いリスクの穴に陥れることになります。
  • 人工知能技術自体もサイバー攻撃の知能レベルを向上させ、インテリジェントなデータ盗難を実行することができます。
  • 人工知能を使用すると、ターゲットを自動的にロックオンし、データ身代金攻撃を実行できます。人工知能技術は、機能ライブラリを学習することでシステムの脆弱性を自動的に検出し、主要なターゲットを特定し、攻撃の効率を向上させます。
  • 人工知能は、分析システムを攻撃するために大量の偽の脅威情報を自動的に生成する可能性があります。人工知能は、機械学習、データマイニング、自然言語処理などの技術を使用してセキュリティビッグデータを処理することで、脅威インテリジェンスを自動的に生成できます。攻撃者は、関連技術を使用して大量の偽のインテリジェンスを生成し、判断を混乱させることもできます。
  • 人工知能は画像認証コードを自動的に識別し、システムデータを盗むことができます。画像認証コードは、ロボット アカウントが Web サイトやサービスを悪用するのを防ぐための一般的な認証手段ですが、人工知能は学習を通じてこの認証手段を無効にすることができます。

IV. その他のリスク

ファイルの処理、ネットワーク プロトコル、さまざまな外部入力プロトコルに関する問題など、サードパーティ コンポーネントに問題がある可能性もあります。ハッカーに悪用された場合、壊滅的な被害をもたらすことになります。

[[338326]]

[簡単に言えば、セキュリティ検証がいかに強力であっても、結局のところそれは単なるデータの文字列です。]

人工知能の時代においては、データセキュリティも多くの新たな課題に直面していることを私たちは明確に認識しなければなりません。データセキュリティとアルゴリズムセキュリティの保護は、企業にとって最優先事項となっています。

<<:  AIは自メディア記事の質を知っている。これがWeChatの自動評価アルゴリズムだ

>>:  オタクなおじさんが独学でAIを学んでマスターレベルを作成し、Twitterで人気になった

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

Waymo - 自動運転技術の解説

[[437828]]今日は、Google の自動運転車 Waymo がどのようにそれを実現するかを見...

いくつかの小さな図でディープラーニングを徹底的に説明します

Andrew Ng 氏は、Tess Ferrandez 氏が修了したディープラーニング特別コースのイ...

テキスト処理から自動運転まで: 機械学習で最もよく使われる 50 の無料データセット

機械学習分野のオープンデータセットにはどのようなものがあるでしょうか。Gengo は最近、高品質の無...

200以上の大規模モデル論文の調査と分析、数十人の研究者が1つの論文でRLHFの課題と限界をレビュー

ChatGPTの登場以来、OpenAIが使用するトレーニング方法である人間によるフィードバックによる...

2021 年に注目すべき 27 の新たな建築技術トレンド (パート 1)

テクノロジーは建設業界にかつてないほど大きな影響を与えています。クラウドベースのコラボレーションやデ...

AIは50個の三角形を使って、ポストモダンな雰囲気を持つモナリザの抽象版を描きます

[[425382]]この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI...

サイバーセキュリティにおける言語モデルの優れた使用例 12 件

サイバーセキュリティは人工知能の最大の市場セグメントであり、過去数年間にわたってサイバーセキュリティ...

...

...

新キングクロード3実戦テスト!すべての能力が素晴らしく、麻雀もプレイできます。確かに GPT-4 よりも優れています。

OpenAI の無敵という神話は崩れ去った。 Claude 3 (中国語対応)が一夜にして発売され...

組織のセキュリティを保護するための暗号化トラフィック分析における機械学習の役割

脅威の攻撃者が戦術や手法を進化させ続けるにつれて(たとえば、暗号化されたトラフィック内に攻撃を隠すな...

1990年代生まれの中国人教授が、1年間でネイチャー誌に3本の論文を発表した。最初の量子ニューラルネットワークQuantumFlowはオープンソースです

[[432543]]ニューラル ネットワークは、現在のコンピューティング アプリケーションで最も急速...

アンサンブル法からニューラルネットワークまで:自動運転技術で使用される機械学習アルゴリズムとは?

現在、機械学習アルゴリズムは、自動運転車業界で増加している問題を解決するために大規模に使用されていま...

...

DeeCamp 2019は産学連携を促進するためにKuaishouとInnovation Worksを正式に立ち上げました

4月8日、イノベーションワークスが主催する「DeeCamp2019 人工知能サマートレーニングキャン...