この記事では、H2o.ai フレームワークを使用した機械学習を使用して R 言語で株価を予測する手順を段階的に説明しました。 このフレームワークは Python でも使用できますが、私は R に慣れているため、このチュートリアルでは R 言語を使用します。 「人工知能を使って株価を予測するにはどうしたらいいのだろう?」と疑問に思ったことがあるかもしれません。その手順は次のとおりです。
前回の記事では、Plotly ライブラリを使用して高頻度データをプロットする方法を示し、分析のためにデータを収集する方法を説明しました。 リストのステップ 3 に直接進みましょう。ステップ 1 と 2 の実行方法を知りたい場合は、前の出版物を参照してください。 私たちの研究の質問は、「今後 1 時間の資産の終値はいくらになるか」です。 データクリーニング MetaTrader を使用して予測する資産のデータをインポートした後、いくつかの変数を変更する必要があります。 まず、変数の名前を定義します。
データは次の形式になります: > データ — 著者による画像 利用可能な変数のうち、始値、高値、安値、終値、およびボリュームのみを使用します。 このようにして、他者を排除します。
次の観測値の終値を知りたいので、次の値を1行上に移動する必要があります。 これを行うには、関数を作成し、元のデータセットに新しいデータを含む変数を作成します。
> データ — 著者による画像 上記の最初の行で変数 Close の値を割り当てたことに注意してください。 この方法では、最後の行に NA があり、na.omit() 関数を使用してその行を省略します。
完璧です。モデリングを開始するためのデータが準備できました。 データの分割 この問題では、人工知能モデルを分析およびトレーニングするための完全なソリューションを提供する H2O.ai というソフトウェア パッケージを使用します。 ユーザーフレンドリーな構造により、データサイエンスの知識がない人でも複雑な問題を解決できます。 まずライブラリを環境にロードしましょう:
インストールしてロードしたら、モデルを構築するための基盤として使用される仮想マシンを起動します。 仮想マシンを起動するときに、必要なコア数とメモリ パラメータを設定する必要があります。
データをインポート:
> データを水に変える — 著者による画像 ここで、データセット内で予測する変数と、モデルを「教える」ために使用される変数を定義します。
次に、トレーニング データの 80% の比率でデータをトレーニングとテストに分割します。
データをセグメント化した後、H2O.ai パッケージの驚くべき部分に進みます。 モデルを選択 すべてのデータ サイエンティストが機械学習プロジェクトを作成するときに実行する必要があるタスクの 1 つは、予測を行うための最適なモデルまたはモデル セットを決定することです。 特定のタスクに最適なものを選択するには、多くの知識、特に数学の確固たる基礎が必要です。 H2O.ai パッケージを使用すると、他の懸念事項にも対処しながら、最適なモデルを選択するように要求できます。 これを自動モデリングと呼びます。 明らかに、この種の魔法は問題を解決する最も効率的な方法ではないかもしれませんが、良いスタートです。 モデルのトレーニング モデルを作成するには、automl 関数を呼び出して、次のように必要なパラメータを渡します。
数分後には、パフォーマンス別に分類されたモデルのリストが表示されます。 詳細については、下記までお電話ください。 オートモデル@リーダー > モデルの説明 — 著者による画像 アプリケーションモデル リーダーができたので、それをテスト データに適用してみましょう。モデルがまだ観測していないデータを使用してパフォーマンスを評価するので、ここが面白いところです。 モデルとテスト データを引数として、予測関数を呼び出します。
結論は この記事では、資産の財務データを処理および操作し、データを分析してから 1 時間以内に終値を予測する機械学習モデルを簡単に作成する方法を説明しました。 モデルの評価と最適化については次の記事で説明します。 ではまた来週! |
<<: AIの力を借りれば、罠だらけのジムは歴史の舞台から消えるのでしょうか?
>>: スマートワーク: AI がリモートワークをどう変えるのか
自動車が発明された日から、自動運転機能への要望は、何世代にもわたるエンジニアたちの焦点となってきまし...
[[427549]] Analytics Insight では、21 世紀においてインテリジェント...
多くのことは国や地域の規制の対象となりますが、人間の表情を認識する能力はいかなる規制も超越しています...
農作物の保護から電力検査、映画やテレビの撮影から消防救助、緊急通信から交通検査まで、ドローンの活用が...
[51CTO.com クイック翻訳] ご存知のとおり、人工知能 (AI) は 1956 年の誕生以来...
ChatGPTのリリース後、テキスト生成技術は急速に発展し、特に標準的な回答がない「テキスト要約」タ...
Google からもう 1 人の中核社員が退職することが明らかになりました。今回逃亡したのは、Dee...
この記事は、公開アカウント「Reading the Core」(ID: AI_Discovery)か...