これらは互いに大きく異なっており、すべてのデータ サイエンティストはその理由と方法を理解する必要があります。 > 出典: SAS Institute の図からヒントを得た この投稿では、データ サイエンス分野の重要な要素として理解しておくべき、非常に重要な違いについて説明します。 上記のベン図はもともと SAS Institute によって公開されたものですが、この図では統計と機械学習の間に重複が見られず、私の知る限り、これは見落としです。 私は自分の能力と理解の範囲内で図を再現しました。 このベン図は、データ サイエンスのすべての分野の違いと重複を非常に適切に示しています。 データ サイエンスが今や包括的な用語となり、他のすべての用語はデータ サイエンスの分野として説明できると信じたいです。各分野は異なっていても、他の分野と非常によく似ています。 機械学習と統計モデリング: これは、データ サイエンティストや機械学習エンジニア、またはこれらの分野で働き始めた人が直面する昔からの疑問です。 これらの分野を研究していると、機械学習が統計モデリングと密接に関連しているように感じることがあり、この 2 つをどのように区別するのか、どのラベルがどのモデルに最適なのか疑問に思うことがあります。 もちろん、機械学習は昨今流行語になっていますが、だからといって統計モデルを機械学習モデルと分類するわけではありません。なぜなら、一般的な考えに反して、それらは異なるものだからです。違いを詳しく理解しましょう。 この記事の流れは次のようになります。
意味機械学習ルールベースのプログラミングに依存せずにデータをインテリジェントなアクションに変換するコンピューター アルゴリズムの開発に関する研究分野は、機械学習と呼ばれます。 統計モデリング統計モデルは通常、1 つ以上のランダム変数と他の非ランダム変数間の数学的関係として指定されます。 したがって、統計モデルは「理論の形式的な表現」です。 退屈で長ったらしい定義はこれで終わりにして、これら 2 つのドメインの違いを詳しく見ていきましょう。 機械学習と統計モデリングの違い1. 歴史的および学術的関連性統計モデリングは、1950 年代頃に機械学習が普及する前から存在していました。 1950 年代に、最初の機械学習プログラムであるサミュエルの検査プログラムが導入されました。 世界中の大学が現在、機械学習や AI プログラムを立ち上げていますが、統計学部を閉鎖するわけではありません。 機械学習は、コンピュータサイエンス部門と独立した AI 部門と連携して教えられており、事前に指定されたルールなしにデータから「学習」することで自ら「知的になる」ことができる予測アルゴリズムの構築を扱います。 上記のMLの定義。 とすれば 統計モデリングは数学科と共同で教えられており、まず異なる変数間の関係を見つけ、次に他の独立変数の関数として記述できるイベントを予測できるモデルの構築に重点を置いています。 2. 不確実性に対する許容度これは 2 つのドメイン間の重要な違いです。 統計モデリングでは、多くの不確実性の推定値(信頼区間、仮説検定など)に注意する必要があり、特定のアルゴリズムの結果を信頼する前にすべての仮定が満たされる必要があることを考慮する必要があります。 したがって、不確実性に対する許容度は低くなります。 たとえば、線形回帰モデルを構築する場合、モデルの結果を使用する前に、次の仮定が満たされているかどうかを確認する必要があります。
対照的に、ロジスティック モデルを構築する場合は、次の仮定を考慮する必要があります。
とすれば 機械学習アルゴリズムでは、仮定はほとんど必要ないか、まったく必要ありません。 ML アルゴリズムには、統計的線形性、残差の正規分布などに対する厳密な要件がないため、統計モデルよりもはるかに柔軟性があります。したがって、不確実性に対する許容度が高くなります。 3. データ要件と方法統計モデルは非常に大きなデータセットでは動作できないため、属性が少なく、観測数がかなり多い管理しやすいデータセットが必要です。 統計モデルでは、属性の数が 10 ~ 12 を超えないようにしてください。これは、過剰適合 (トレーニング データセットではパフォーマンスが良好でも、トレーニング データセットに非常に近いため、未知のデータではパフォーマンスが低下するという望ましくない状況) が発生する可能性が非常に高いためです。 さらに、ほとんどの統計モデルはパラメトリックアプローチ(例:線形回帰、ロジスティック回帰)に従います。 とすれば 機械学習アルゴリズムは学習アルゴリズムであり、学習するには大量のデータが必要です。 したがって、多数の属性と観察を含むデータが必要になります。 大きいほど良いです! ML アルゴリズムには、ある程度のビッグデータが必要です。 さらに、ほとんどの機械学習モデルは、非パラメトリックアプローチ(K近傍法、決定木、ランダムフォレスト、勾配ブースティング法、SVM など)に従います。 いつ使うのですか?これは主に、以下に説明する要因によって決まります。 理論的なポイントを説明し、例を挙げて説明します。 次のような場合には、統計モデルが第一の選択肢となります。
機械学習はより良い選択肢かもしれない
たとえば、クレジットカード会社と協力し、顧客離れを追跡するモデルを構築したい場合、ビジネス分野の知識に基づいて解釈および拒否できる 10~12 個の予測変数を持つ統計モデルが好まれる可能性が高くなります。この場合、予測の精度よりも解釈可能性の必要性が高いため、ブラック ボックス アルゴリズムは好まれません。 一方、強力なレコメンデーション エンジンを構築したい Netflix や Amazon などのクライアントのために作業している場合、結果の精度の要件はモデルの解釈可能性よりも高くなるため、ここでは機械学習モデルで十分です。 これでこの記事は終わりです。 データマイニングと機械学習の違いと、上位 4 つの機械学習アルゴリズムの詳細については、次の記事を参照してください。
機械学習、データサイエンス、統計に関する詳細については、このページをご覧ください。 楽しく学んでください:) |
<<: マイクロソフト、人間の編集者をAIに置き換え、ジャーナリスト数名を解雇
>>: データサイエンティストと開発者向けの新しいツールであるAmazon SageMakerが中国で利用可能になりました
私は Unix オペレーティング システムに関する知識を頻繁に学んでおり、Unix オペレーティング...
世界がますますデジタル化されるにつれて、かつてない量のデータが毎日生成され、組織にはこの膨大な量のデ...
[[128752]]アルゴリズム1: クイックソートアルゴリズムクイックソートは、Tony Hall...
米国のベンチャーキャピタル企業a16zは10月9日、Cエンドユーザーに公開されている現在市場に出回っ...
以下に紹介する Mysql テーブルのパーティショニング プロセスは、ハッシュ アルゴリズムに基づい...
Leifeng.com によると、「部屋の中の象」という外国の慣用句は、「ワニの涙」と同じくらい有...
1. 新しいユーザーシナリオでの実験が直面する問題1. UGパノラマUGのパノラマビューです。 U...
AI とハイパーオートメーションに期待するのには十分な理由があります。AI には、人間の思考や関連す...
2021年7月6日、世界人工知能大会組織委員会事務局主催の第1回BPAA応用アルゴリズム実践モデル...
検索拡張生成は、AI モデルがデータを改善し、幻覚を軽減できるようにする最も有望な技術の 1 つと考...
最近、「射雁英雄伝」でアテナ・チュウが演じる「黄容」の顔をAI技術で楊冪の顔に差し替えた動画が、ネッ...