2020 年の機械学習の 5 つのトレンド

2020 年の機械学習の 5 つのトレンド

[[318500]]

[51CTO.com クイック翻訳]機械学習は、多くの人にとって新しい用語かもしれません。1952 年にアーサー・サミュエルによって初めて提案されました。それ以来、進化を続ける機械学習は、多くの産業分野で好まれる技術となっています。ロボットによるプロセスの自動化から技術的な専門知識まで、機械学習技術は予測を行い、ビジネス運営に関する貴重な洞察を得るために広く使用されています。これは人工知能(機械によって発揮される知能)の分野であると考えられています。

機械学習は、主にパターンと推論に依存する統計モデルと複雑なアルゴリズムの科学的研究として定義できます。この手法の利点は、明示的な指示に頼らずに使用できることです。

機械学習の影響は魅力的であり、業界を問わず多くの企業の注目を集めています。最も重要なのは、機械学習があらゆる業界の基盤を真に良い方向に変えつつあることです。

Statista は、2019 年第 1 四半期に機械学習に 285 億ドルが投資されたと報告しており、この技術がいかに重要であるかを示しています。

機械学習の重要性を考慮して、2020 年に市場に溢れるいくつかのトレンドをリストアップしました。ここでは、世界中の多くの業界の基盤を変えるであろう、最も期待されている機械学習のトレンドを紹介します。

1. デジタルデータの規制

今日では、データが王様です。さまざまなテクノロジーの出現により、データの量は増加しています。自動車業界でも製造業界でも、データは前例のない速度で生成されています。しかし、疑問は「すべてのデータが重要なのか?」ということです。

この謎を解くには、クラウド ソリューションとデータ センターの助けを借りて大量のデータを分類できる機械学習を導入することができます。重要度に基づいてデータをフィルタリングし、有用なデータを抽出し、役に立たないデータを破棄します。こうすることで、時間を節約し、企業は経費を管理できるようになります。

2020 年には膨大な量のデータが生成され、多くの業界では効率性を向上させるために関連データを分類する機械学習が必要になります。

2. 音声アシスタントのための機械学習

emarketerによる2019年の調査によると、米国では推定1億1,180万人がさまざまな目的で音声アシスタントを使用しています。したがって、音声アシスタントがあらゆる分野で広く使用されるようになることは明らかです。 Siri、Cortana、Google Assistant、Amazon Alexa などは、人気のインテリジェント パーソナル アシスタントの一部です。

機械学習と人工知能を組み合わせることで、ビジネス運営の処理と最高レベルの精度の確保に役立ちます。したがって、機械学習は、生産性を向上させながら、多くの業界が複雑で重要なタスクを簡単に完了するのに役立ちます。

2020 年には、専用の機械学習音声アシスタントの開発に重点を置いた研究および投資分野が増加すると予想されます。

3. 効率的なマーケティングに活用

マーケティングは、競争の激しい環境であらゆる企業が生き残るために重要な要素です。マーケティングは、望ましい結果をもたらしながら、企業のイメージと知名度を高めます。しかし、既存の複数のマーケティング プラットフォームの助けを借りても、企業の存在を証明することは難しくなります。

しかし、企業が既存のユーザーデータからパターンを抽出できるほど成功している場合は、効果的で効率的なマーケティング戦略を開発できる可能性が高くなります。データを分析するには、機械学習を導入してデータをマイニングし、研究方法を評価してより良い結果を得ることができます。

今後、企業は効率的なマーケティング戦略を定義するために機械学習を採用することが期待されています。

4. ネットワークセキュリティの向上

最近サイバースペースが話題になっています。 Panda Security は、ハッカーが毎日約 230,000 個のマルウェア サンプルを作成しており、マルウェアを作成する意図は常に非常に明確であると主張しています。コンピュータ、ネットワーク、プログラム、データセンターの数が増えたため、マルウェア攻撃の検出はより困難になっています。

[[318501]]

幸いなことに、複雑なタスクを自動化し、サイバー攻撃を独自に検出することで、多層的な保護を提供できる機械学習テクノロジーがあります。それだけでなく、機械学習はサイバーセキュリティ侵害に対応し、被害を最小限に抑えるためにも使用できます。人間の介入なしにサイバー攻撃に自動的に対応できます。

今後、機械学習は、被害を抑制し回避するための高度なサイバー防御の取り組みに利用されるようになります。

5. より高速な計算能力

業界アナリストは人工ニューラル ネットワークの能力を評価し始めています。問題解決システムを支援するために必要なアルゴリズムのブレークスルーが誰の目にも明らかだからです。ここで、AI と機械学習は、探索と規制された意思決定能力を必要とする複雑な問題を解決できます。これらすべてが実現すれば、私たちは前例のない計算能力を手に入れることができるでしょう。

Intel、Hailo、Nvidia などの企業は、カスタム ハードウェア チップと AI アルゴリズムの解釈可能性を通じて、既存のニューラル ネットワーク処理をサポートする態勢をすでに整えています。

企業が機械学習アルゴリズムを実行するための計算能力を把握すれば、エッジでデータを処理するためのハードウェアに多額の投資をするIT大手が増えると予想されます。

原題: 2020 年の機械学習のトレンド、著者: Tanya Singh

[51CTOによる翻訳。パートナーサイトに転載する場合は、元の翻訳者と出典を51CTO.comとして明記してください]

<<:  人工知能のトレンドは将来的に急速な変化をもたらす

>>:  顔認識はどのように機能しますか?

ブログ    

推薦する

初心者のための NLP: 先のことを心配せずに、1 つの記事でコーパスの前処理を理解しましょう

自然言語処理は AI の最高峰であり、コーパス前処理は自然言語処理の基礎です。 [[336067]]...

rsyncのコアアルゴリズム

Rsync は、Unix/Linux でファイルを同期するための効率的なアルゴリズムです。2 台のコ...

AIがソフトウェアエンジニアリングをどのように強化できるかについて知っておくべきことすべて

翻訳者 |李睿レビュー | Chonglou AI 拡張ソフトウェア エンジニアリングは、人工知能と...

人工知能の代表的な応用分野トップ10の一覧と技術原理の図解

[[329146]]この記事では、「アルゴリズム」という単語を非常に簡略化して使用し、単一のアルゴリ...

スマートビルディングにおける技術の陳腐化にどう対処するか?

今日の建物、ましてや将来のスマート ビルにとって、技術インフラの重要性はいくら強調してもし過ぎること...

アンサンブル法からニューラルネットワークまで:自動運転技術で使用される機械学習アルゴリズムとは?

現在、機械学習アルゴリズムは、自動運転車業界で増加している問題を解決するために大規模に使用されていま...

...

KServe、Kubernetes環境に基づく高度にスケーラブルな機械学習デプロイメントツール

ChatGPT のリリースにより、機械学習技術の活用を避けることがますます難しくなってきています。メ...

...

...

IntelがBigDLディープラーニングフレームワークをリリース、CPUを使ってGPUを攻撃する予定

[51CTO.com クイック翻訳] 先週、Intel は分散型ディープラーニング用のオープンソース...

Llama インデックスを使用したマルチエージェント RAG の構築

検索拡張生成 (RAG) は、大規模言語モデル (LLM) の機能を強化する強力な手法として登場しま...

...