2024 年のデータ テクノロジーのトレンド: 基礎モデルと機密コンピューティング

2024 年のデータ テクノロジーのトレンド: 基礎モデルと機密コンピューティング

おそらく、現代のデータ環境を形作る最大の力は、基礎となるモデルの遍在性です。これらのモデルは、外部の顧客とのやり取りから社内の従業員とデータ システムのインターフェイスまで、あらゆるものに影響を与えている生成 AI の導入で最も顕著に表れています。

したがって、データの保存と取得、基礎となるモデルからの価値の適用と生成、データセキュリティやデータプライバシーなどのデータ駆動型プロセスの重視に関する新しいパラダイムが 2024 年に確立されるでしょう。高度な機械学習の導入が私たちの生活に彩りと情報をもたらし続けるにつれ、データを保護し、規制遵守を確保するための基本は時間とともに進化し、両方を抑制し続けることになります。

自然言語を生成するインテリジェントロボットは、まだ始まったばかりです。これらの AI 機能をサポートし、2025 年まで導くために、完全なエコシステムが形成されつつあります。

マルチモーダル生成モデル

ベースモデルはテキスト生成が非常に優れているため、忘れてしまいがちです。定義上、適用可能な任意の数のタスクの処理に優れています。その結果、組織は今後数か月以内にこれらの機能を最大限に活用し始め、生成 AI 投資の ROI が向上します。

GPT-4 は画像とテキストをシームレスに統合することができ、この軌道は音声、ビデオ、音楽、センサーデータなどの他の入力を含む他のモダリティにもすぐに拡張されます。賢明な組織は、マーケティング、デジタル資産、顧客サービスなどにプラスの影響を与えるマルチモーダル生成 AI のユースケースの調査と試験運用を開始するでしょう。

ベクターデータベースの勝利

検索強化型生成とセマンティック検索を含む生成 AI アプリケーション向けのエンタープライズ ベース モデルの標準化が主な要因となり、Vector Database では、これらの機能の価値と採用が 2 倍になると予想しています。これらの類似検索エンジンは、おそらく AI 検索システムと考えるのが最も適切でしょう。つまり、組織が保有する膨大な量の非構造化データを保存し、言語モデルを使用してそのデータを可能な限り最適な方法で照会するのです。

ベクトル データベースは、高次元データを処理し、複雑な類似性検索を容易にする機能があるため、急速に注目を集めています。組織が、メモリ内にベクトル データベース インデックスを維持することによる潜在的なコストの阻害要因を回避する方法を決定すると、これらのリポジトリによって、推奨システム、画像認識、自然言語処理、財務予測、その他の AI 主導の企業など、多くのユース ケースが強​​化されます。

ジェネレーティブAIはパーソナライゼーションを優先する

RAG 実装とベクトル類似性検索における生成 AI モデル 頻繁にアクセスされる大量の非構造化データ (以前はダーク データと考えられていた) により、データ セキュリティと規制コンプライアンスに関する一般的な懸念が高まっています。

2024 年のもう 1 つの重要なトレンドは、企業が「組織レベルでデータ プライバシー保護を確保しながら、ドメイン固有のチャットボットの開発に重点を置いた生成 AI」を目にするようになることです。RAG は、生成 AI モデルを搭載したチャットボットが検証済みのデータにアクセスし、データ プライバシー、規制遵守、およびデータ セキュリティの制御を組み込むことを保証することで、この実現に役立ちます。

機密コンピューティングの導入が増加

実装方法に応じて、機密コンピューティング ファブリックは、AI モデルのパーソナライゼーションを生成することでデータ保護の強化に大きく役立ちます。このコンピューティング モデルでは、機密データを安全な CPU エンクレーブに分離し、クラウドで処理します。このデータとその処理方法には、エンクレーブによって承認されたコードによってのみアクセスできます。

来年は、クラウド ソリューションが戦略的にハードウェア ベースの機密コンピューティングを活用し、プライバシーとセキュリティの要件が高いアプリケーションを引き付けるようになるため、ハードウェア ベースの機密コンピューティングの統合が増加すると予想されます。この(機密コンピューティング)トレンドは、機械学習、金融サービス、ゲノミクスなどの専門分野で特に普及するでしょう。

見通し

基礎モデルによってもたらされる変化には、基礎モデルがこれまで大きな影響を与えてきたデータ環境が含まれますが、最終的にはその範囲を超えます。実際、それは仕事と私生活の両方の領域に大小さまざまな形で影響を及ぼします。マルチモーダル展開、ベクトル データベース、パーソナライゼーション、機密コンピューティングは、これらの AI アプリケーションを進化させ、企業や社会にさらなる利益をもたらすための多くの方法の一部です。

<<:  「ヴィンセントピクチャー」がまたバージョンアップしました!パーソナライズされたリファレンスを学習し、無制限で多様な画像を生成し、おもちゃの建物を簡単に設計します

>>:  再編とリーダーシップ:デジタルとAIのリーダーが他を置き去りにしている

ブログ    
ブログ    

推薦する

テクノロジー|軽量顔検出アルゴリズムの徹底レビュー

顔検出は、幅広いアプリケーションと多くの研究者を抱えるコンピューター ビジョンの古くからのトピックで...

企業は生成AIのオープンソース化のリスクとメリットを検討

EmTech MIT では、専門家が、生成 AI モデルのオープンソース化の長所と短所を含め、企業で...

ドローン配送がレイアウトブームを巻き起こす、普及するには2つのポイントに注意が必要

滴滴出行が昨年11月にドローンによる食品配達サービスを検討すると発表し、美団も最近ドローン配達隊に加...

少数ショット学習(1) — 機械学習におけるタスク最適化空間

[[401868]]今日のディープラーニングの成功には大量のデータが必要であり、これは不可欠な前提条...

GPT-4よりも優れた20億パラメータモデルは、ほぼ100%の精度で算術問題を解く

現在、大規模言語モデル (LLM) は、NLP の分野におけるさまざまな下流タスクの処理において優れ...

2020 年のデータサイエンスの 4 つの注目トレンド

データ サイエンスの新しい機能は進化を続け、あらゆる業界に浸透しています。世界中の組織がデジタル変革...

...

NLPとナレッジグラフの統合

この記事は、中国情報処理学会の事務局長である白碩博士が杭州金融ナレッジグラフフォーラムで行った講演を...

人工知能時代の罠を回避し、実装を実現する方法

つい最近、カリフォルニア大学バークレー校で活躍している、インターネットで有名な無人食品配達車「Kiw...

調査レポート:2021年の人工知能開発動向予測

人工知能は、幅広い議論を巻き起こすだけでなく、人々に未来への無限の夢を抱かせるようなさまざまなテクノ...

...

ChatGPTにはファイル分析や自動検索などの新機能がある。スタートアップ企業の製品は置き換えられるのだろうか?

最近、OpenAIはChatGPT Plusメンバー向けに新しいベータ機能を開始しました。これには主...

GoはPythonよりはるかに進んでおり、機械学習の人材は非常に不足しています。世界中の16,655人のプログラマーが真実を語ります

Go は開発者の間でますます人気が高まっています。数年前、Didiのエンジニアから、DidiではGo...

ソフトウェア開発に AI とアジャイル管理を導入するための 9 つのヒント

[51CTO.com クイック翻訳] ご存知のとおり、人工知能 (AI) は 1956 年の誕生以来...