予測分析: 組織内の時間とデータの再考

予測分析: 組織内の時間とデータの再考

[[278064]]

時系列は標準的な分析手法ですが、より高度な機械学習ツールでは、より正確な予測モデルを構築するために統計手法が導入されています。時間を戻すことはできませんが、既存のツールを使用すれば、時間を予測できる可能性が高まります。より正確には、時系列サンプル内のイベントが意思決定の傾向に影響を与え続けるかどうかを予測できます。

Google がリリースした Facebook Prophet と TensorFlow は、開発者がデータ サイエンス アプリケーションを作成するように設計された 2 つの機械学習プロトコルです。テクノロジーおよび分析マネージャーは、これらのツールを DataOps 機能を拡張し、機械学習に向けた最初のステップを踏むための手段として捉える必要があります。

Facebook のコア データ サイエンス チームによって作成された Facebook Prophet は、処理能力が問題となる場合に信頼性の高い時系列予測を提供します。 Prophet は、非線形傾向が年間、週ごと、および日ごとの季節性にどのように適合するかを説明する加法モデルに基づいています。このフレームワークは、予期しないイベントの影響の傾向を発見するなど、データに周期的な傾向が含まれている場合に企業に役立ちます。 R プログラミングと Python バージョンは 1 年前にリリースされ、企業はオープン ソース リソースを活用してモデルを作成できるようになりました。 ソースコードとサンプルは GitHub で入手できます。

ニューラル ネットワーク フレームワークは、R では別のライブラリと呼ばれる追加の確率モデルのセットも提供します。これにより、より高度な統計モデルをモデルに簡単に組み込むことができます。時系列の場合、ユーザーはベイズ構造化時系列を適用できます。ベイズ構造化時系列は、多くの標準的な時系列モデリングの概念を包含し、拡張する確率モデルのセットです。その目的は、現在の期間と過去の期間の時系列データをより正確に比較できるようにする統計の詳細を強調することです。 TensorFlow Probability ライブラリを使用すると、モデルにベイズ構造の時系列を含めることができます。

なぜ時系列が重視されるのでしょうか? 時系列レポートは Excel スプレッドシートと同じくらい一般的であり、多くのツールが時系列データを表示し、Web 分析ソリューションやソーシャル メディア分析レポートを確認するだけで時系列レポートを取得できます。ただし、これらのソリューションにおける時系列データの視覚化では、統計分析は実際には考慮されていません。

Google アナリティクスなどの Web 分析ソリューションは、参照トラフィックの時系列結果を提供できます。これにより、どのソースが Web サイトに継続的にトラフィックを送信しているかを判断するのに役立ちます。ただし、特定の紹介元のトレンドがどのくらい続くかを予測する必要がある場合、期間が十分に長いと、トレンド ラインの傾斜がフラット ラインとすぐには区別できない可能性があります。トラフィックの増加が遅いため、最初のクライアントの検索トラフィックの最もコンバージョン率の高いソースを特定するには、多くの場合、より長い時間がかかります。

手元のデータ ソースによっては、特定の時系列の頻度パターンが線形にならない場合があります。これは、観測結果が対数または曲線の形で連続的な増加または減少を示すことを意味します。統計機能を備えたツールは、標準的なソリューションよりもこれらの微妙な傾向をより適切に検出できます。株式市場の予測を行う金融専門家は、より優れた統計機能の価値をよく認識しています。高度なツールを使用して正確な時系列予測を作成しますが、データ内のノイズと変動性により傾向がわかりにくくなります。

最新のツールにより、多くの統計機能が可能になり、有意義な意思決定分析の作成が迅速化されます。データ内のランダムノイズも除去できます。ただし、高度な分析は、Tableau などの他のダッシュボードで実行することも、Prophet が提供するように Python や R でプログラム的に視覚化を作成することによって実行することもできます。

時系列は単純な分析ですが、複雑な統計的ニュアンスが含まれる場合もあります。これらのニュアンスを調べることで、適切な詳細がすぐに明らかになり、チームがデータに基づいた適切な意思決定をより迅速かつ適切に行うことができます。

<<:  AIが使われるようになった今、データセキュリティではこれら4つの大きな問題を避けることはできない

>>:  任正非氏と世界の人工知能専門家との対話の全文記録:ファーウェイの5G技術は米国にのみ販売されている

ブログ    

推薦する

人工知能は前例のないキャリア革命をもたらすだろう

最近、サンフランシスコでEatsaというアメリカンレストランが人気になっています! [[203610...

2Dが3Dになり、視野角を自由に変更でき、高精細な立体感が完璧に復元されます

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

説明可能な AI とは何ですか?

説明可能な人工知能 (XAI) とブロックチェーン技術の融合は、分散型エコシステムにおける取引の監査...

教師なし機械学習の基本ガイド

[51CTO.com クイック翻訳] 教師なし機械学習と人工知能は、組織のビジネス成長に役立つことは...

OpenAIがついにオープン:DALL-E 3の論文が発表され、ChatGPTが開始、著者の半数が中国人

最後に、「OpenAI は再びオープンになりました。」 OpenAIが発表したばかりのDALL・E ...

Bespin Global: AI技術を活用してクラウドネイティブのインテリジェントな運用・保守方法を構築

【51CTO.comオリジナル記事】序文最近、Bespin Globalの共同創設者であるBrad ...

ロボット市場は飛躍の準備ができており、人間と機械の統合が主流のトレンドとなっている

最近、2021年世界ロボット大会が北京で盛大に開幕しました。ロボット分野の最先端技術と最新の成果が展...

最新の米国の世論調査によると、人工知能技術に対する国民の信頼は昨年に比べて低下している。

ChatGPTなどのツールのリリース後、生成型人工知能(GenAI)が人工知能技術における注目の的...

...

...

「幻想」を消し去れ! Google の新しい ASPIRE メソッドにより、LLM は自己採点が可能になり、その効果はボリューム モデルよりも 10 倍優れています。

大規模モデルの「幻覚」問題は解決されつつあるのでしょうか?ウィスコンシン大学マディソン校とグーグルの...

...

動的グラフのディープラーニング - 時系列グラフネットワークモデリング

インターネットから収集したコンテンツさまざまな性質のトランザクション ネットワークや社会的つながりを...

IBM LinkedIn が教えてくれる: 職場と AI はどれくらい離れているのか?

[51CTO.com からのオリジナル記事] 少し前に、LinkedIn と IBM が多数の専門...

LLaMa 3はGPT-4を目指し、ジェミニから教訓を得て7月に延期される可能性あり

過去には、画像生成モデルは主に白人を被写体として表示していることで批判されることが多かったが、Goo...