この記事は、公開アカウント「Reading the Core」(ID: AI_Discovery)から転載したものです。 「考えて、もう一度考えて、そして行動する。」このプロセスは聞き覚えがありますか? ほとんどの人がこの方法で行います。 しかし、この思考プロセスは諸刃の剣になる可能性があります。場合によっては、結果がポジティブで役立つこともありますが、他の場合には、結果が有害であったり、逆効果になったりすることもあります。後者は私たち全員が避けたいものです。感情の崩壊を明確に把握するために、私はこの機械学習 (ML) プログラムを作成しました。
隔離期間は私に自分自身を探求し、自分の考えを吟味する機会を与えてくれました。私は考えるタイプではありませんが、いつも考えがまとまらなくなり、そのたびに頭をすっきりさせる必要があります。そこで、自分の思考プロセスを分析できる ML モデルを作成したいと考えました。 KNNアルゴリズムを使用して避けるべき感情を判断し、視覚化技術を使用して感情をグラフ形式で表示し、全体像を明確に把握できるようにしました。やり方は次のとおりです:
データセットを作成する データセットは、落ち込んでいる、悲しい、謙虚、泣いている、痛い、混乱している、幸せ、興奮している、決意しているという 9 つの感情 (特徴) で構成されています。私はそれらをポジティブ、ネガティブ、ニュートラルの 3 つのカテゴリ (ラベル) に分類しました。さらに、ラベルに基づいて、9 つの感情/特性をそれぞれ 1 ~ 10 のスケールで評価しました。合計150個のケースを作成しました。データセットの最初の数行は次のとおりです。 KNNアルゴリズムの使用 次のステップに進む前に、まず教師あり学習の基本的な ML 用語を理解する必要があります。
目標はラベルを正しく予測することです。したがって、トレーニングされたアルゴリズムの精度は高くなるはずです。高くない場合は、予測されたラベル値と元のラベル間の誤差を最小限に抑える必要があります。これらの基本を踏まえて、KNN アルゴリズムに移りましょう。 KNN は教師あり機械学習アルゴリズムであり、「K」は分類するポイントの隣接値の数です (たとえば、K = 1、2、3 など)。 左の画像では、KNN は「?」を最も近いため緑の星として分類します。同様に、右側の例では、これらの三角形が最も近い多数決ケースであるため、KNN は「?」を黄色の三角形として分類します。 新しい症例と既知の症例の近さは、ユークリッド スケールやミンコフスキー スケールなどの任意の距離関数を使用して表現できます。それが「最も近い隣人」と呼ばれる理由です。このようにして、KNN アルゴリズムは新しいケースを分類します。この特定のモードでは、KNN は各感情の分類を正しく予測する必要があります。すべてのデータを前処理した後、KNN アルゴリズムを使用して、精度を 98.6% と計算しました。以下は同じことを示すコード スニペットです。 視覚化技術を使用する データの視覚化を使用してデータを分類し、グラフ化して理解しやすくし、前向きな考え方を維持するために避けるべき感情を予測するソリューションを作成しました。この手法は、ラベル カテゴリ (ポジティブ、ネガティブ、ニュートラル) を区別するのに役立ちます。このために、私は「ボックス プロット」を使用しました。 結果 KNN によって生成されたグラフは次のようになります。
ボックス プロットは詳細な図解を提供します。図は明快で理解しやすく、特性や思考に基づいて 3 つの異なる感情やラベルを明確に区別しています。これは KNN グラフとほぼ同じ結果を示していますが、よりわかりやすい説明を提供します。
幸せ: この特性は間違いなくポジティブなラベルです。ただし、中立の四分位数は正の数よりもはるかに高く、中立と負の数だけを考慮すると、中立は両方よりも高くなります。
画像ソース: unsplash このプロジェクトは本当に楽しかったです。最初は分類結果が単純で明白だと思っていましたが、完成してみると、単なる分類以上のものであることに気付きました。 ML プログラムは、人間が簡単に完了できる特定のタスクを予測できるだけでなく、データ セットの詳細な分析も実行できます。 これは人間のような知能の始まりに過ぎませんが、非常に興味深いものであり、おそらくここから「機械学習」という名前の由来が生まれたのでしょう。 |
<<: Python で KNN アルゴリズムを使用して欠損データを処理する
>>: 人工知能はあらゆる点で人間よりも優れているのに、なぜ人間の言っていることを理解できないのでしょうか?
ちょうど今、国際データコーポレーション(IDC)が発表した最新の「中国人工知能クラウドサービス市場調...
私たちの生活に浸透しているすべてのチャットボット、音声アシスタント、予測テキスト、その他の音声/テキ...
現在、人工知能は独立に向けて動き始めています。世界中の企業はこの学際的な分野に適応し、ほぼすべてのビ...
現在、世界中の何百万もの開発者が GitHub を使用してコードを共有し、ビジネスを構築しており、多...
人工知能が保険会社、顧客、カスタマーサービススタッフにどのように役立つかを人々が理解する必要がありま...
COVID-19 により、企業はデジタル変革の取り組みを数か月、場合によっては数年も加速させるようプ...
10月12日、外国メディアは関係者の話として、人工知能(AI)研究企業OpenAIが来月、開発者向け...
数日前、私の友人がByteDanceの面接を受けました。面接官は彼にリンクリストアルゴリズムの質問を...
[[201444]]ニューラルネットワークのデバッグは、専門家にとっても困難な作業です。数百万のパラ...
1. はじめに知識抽出とは通常、豊富な意味情報を持つタグやフレーズなどの非構造化テキストから構造化...
[[328993]] 【51CTO.com クイック翻訳】 AI 市場のトレンドはどのくらいの速さで...
人工知能(AI)は、人間の知能特性を備えたタスクを実行できるコンピューティングプログラムを指します。...