AI導入における7つの最大の障壁とその解決方法

AI導入における7つの最大の障壁とその解決方法

COVID-19 により、企業はデジタル変革の取り組みを数か月、場合によっては数年も加速させるようプレッシャーをかけられていることがわかりました。 パンデミックの到来により、企業は手元にあるテクノロジー、特に人工知能 (AI) を再考し、生産性の向上、サプライ チェーンの問題の解決、製品とサービスのシームレスな提供に活用するようになりました。 組織は AI をデジタル戦略に統合する必要性を認識しており、この記事では一般的な AI 導入の課題に対処することに焦点を当てます。

人工知能は、時間、エネルギー、お金を節約できる革新的なテクノロジーです。それはもはや科学の教科書や SF ファンタジーに限定されず、現実世界でも無数の応用があります。企業は現在、この未来的なテクノロジーを導入することの重要性を認識し始めています。実際、機械知能の高度な浸透により、根本的な問題を解決することができます。

マッキンゼーの調査によると、2021年には AI の導入が増加しており、今後も増加し続けることが予想されています。 「回答者の56%が少なくとも1つの機能でAIを使用していると報告しており、これは2020年の50%から増加している」と指摘した。

企業は AI の導入が前進への道であると認識していますが、それは必ずしも簡単ではありません。では、企業がこの次世代テクノロジーの大きな可能性を実現することを妨げている主な障壁は何でしょうか? AI 導入の課題を一つずつ説明しましょう。

倫理的配慮

AI を導入する際の最初の課題は、組織が AI をより多くのプロセスに統合するにつれて、倫理が差し迫った問題になるということです。 AIは人間の偏見に科学的信憑性を与え、それを増幅させる傾向があり、意思決定の可能性に疑問を投げかけています。幸いなことに、解決策はあります。

一つの希望の兆しは、人々がこの問題をより意識するようになり、AI における偏見の可能性を認めることが第一歩となっていることです。企業が AI/ML モデルをトレーニングする場合、偏ったデータに積極的に対処し、AI が偏りのないように特別にプログラムする必要があります。さらに、アノテーターはトレーニング データをアルゴリズムに入力する前に、それを慎重に分析する必要があります。こうすることで、偏った結論には至りません。

データ品質が低い

収益性の高い AI 導入を妨げる最も重要な障壁の 1 つは、使用されるデータの品質が低いことです。 AI アプリケーションのスマートさは、アクセスできる情報によって決まります。関連性のない、または不正確にラベル付けされたデータセットは、アプリケーションが適切に動作しない原因となる可能性があります。

多くの組織は過剰なデータを収集しています。矛盾や冗長性が多発し、データの劣化につながる可能性があります。収集プロセスを合理化することでデータの品質を向上させることができます。利害関係者は、データのクリーニング、ラベル付け、保管にさらに注意を払う必要があります。これらのワークフローの変更により、企業に高品質のデータが提供されるようになります。

データガバナンス

サイバー犯罪の増加に伴い、責任あるデータ ガバナンスがこれまで以上に重要になっています。企業が機密情報にアクセスし、それを使用する方法について人々が懸念していることから、顧客向け AI を活用する組織は、アプリケーションを展開する際に自ら責任を負うことが重要です。

ここで重要なのはセグメンテーションと可視性です。組織は、あらゆる段階で AI アルゴリズムがデータをどのように使用するかを監視および制限できるようにする必要があります。セグメンテーションにより、侵害の影響が軽減され、ユーザー情報が可能な限り安全に保存されます。同様に、透明性の高いデータ収集ポリシーは、AI に関連する懸念を軽減するのに役立ちます。

プロセス欠陥

企業では、AI の導入と監視に社内ツールとパイプラインを使用することが多いです。効率的な AI モデルをゼロから構築するには、多大な時間と費用がかかります。したがって、始めたばかりの場合、AI の導入にはコストがかかる可能性があります。さらに、ツールには不適切なアルゴリズムや偏ったデータが含まれている可能性があります。このような場合、AI 統合にサードパーティ ツールを採用するか、市場で実績のあるツールを使用するのが賢明な選択です。

サイバーセキュリティ

AI の実装によりサイバーセキュリティのリスクが生じます。 AI イニシアチブのためのデータ収集中に、データ侵害が数多く発生しています。したがって、保存されたデータをマルウェアやハッカーの攻撃から保護することが、企業の最優先事項である必要があります。強力なサイバーセキュリティ防御アプローチは、このような攻撃を防ぐのに役立ちます。さらに、AI 導入リーダーは、複雑な脅威の増大を認識し、事後対応型から事前対応型の戦略に移行する必要があります。

ストレージ制限

AI/ML モデルのトレーニングには、一定量の高品質のラベル付きデータセットが必要です。したがって、組織は必要なアクティビティを実行し、信頼できる結果を提供できるように、大量のデータを機械学習アルゴリズムに取り込む必要があります。

従来のストレージ技術は非常に高価であり、スペースにも制限があるため、これは困難になっています。しかし、フラッシュメモリなどの最近の技術革新が解決策を提供しているようです。高価な従来のハードドライブとは異なり、フラッシュ ストレージは信頼性が高く、手頃な価格です。

コンプライアンス

人工知能やその他のデータ中心の業務は、法律や規制による監視がますます厳しくなってきています。特に金融や医療などの規制が厳しい業界で事業を展開している組織は、これらの制限を遵守する必要があります。

高いプライバシーとガバナンスの基準を維持するための柔軟なアプローチを採用することで、これらの企業はよりコンプライアンスに準拠できるようになります。規制の強化により、第三者監査人の需要が高まる可能性が高くなります。

今後の道

人工知能はゲームチェンジャーになりつつあり、その可能性は探求する価値があります。 PwC の調査によると、「2030 年までに AI は世界経済に最大 15.7 兆ドルの貢献をする可能性があります。これは、現在の中国とインドの総生産を合わせた額を超えます。このうち、6.6 兆ドルは生産性の向上によるもので、9.1 兆ドルは消費の副次的影響によるものです。」

しかし、AI を企業に役立てるにはどうすればいいのでしょうか? AI 導入の障壁を予測し、実装に戦略的なアプローチを取ることで、組織は変革的な成長を達成し、利益を最大化することができます。

<<:  医療AIの今後の展開:注目すべき3つのトレンド

>>:  Tongji と Alibaba は CVPR 2022 最優秀学生論文賞のためにどのような研究を行いましたか?これは、

ブログ    
ブログ    

推薦する

ガートナー:世界の会話型 AI 支出は 2023 年に 186 億ドルに達すると予測

8月1日、ガートナーの最新レポートによると、カスタマーサービスセンター(CC)テクノロジー、会話型A...

Pika 1.0 はアニメーション業界に完全な革命をもたらします!ドリームワークスの創設者は、3年後にはアニメーションのコストが10分の1に下がると予測

最近、ドリームワークスの創設者ジェフリー・カッツェンバーグ氏は、生成AIの技術がメディアとエンターテ...

Python 機械学習チュートリアル

この機械学習チュートリアルでは、機械学習の基本および中級の概念について説明します。初心者の学生と働く...

CLImF アルゴリズムを使用して推奨システムを設計する方法

[51CTO.com からのオリジナル記事] 2010 年以降、レコメンデーション システムの分野で...

新たな美容問題:彼女がAIではないことをどうやって証明するか

私の家族の皆さん、人間として生きることが昨今こんなにも困難になっているとは誰が想像したでしょうか?最...

...

中国のAI臨床診断がネイチャー誌に初掲載:71人の専門家が人間の医師を上回る精度の報告書を寄稿

[[257228]] 【新知能紹介】中国内外の科学者71人が共同で、検査結果を検知し、医師と同じくら...

...

AI、機械学習、ディープラーニングのつながりと違いを1つの記事で理解する

急速に変化する今日のテクノロジーの世界では、人工知能 (AI)、機械学習 (ML)、ディープラーニン...

企業がAIベースのツールを使用して脆弱性を管理する方法

脆弱性の管理は、セキュリティ専門家にとって最優先事項の 1 つです。セキュリティ チームは、サイバー...

Google、機械学習を使用して医療イベントを予測するFHIRプロトコルバッファツールをオープンソース化

先月26日、GoogleはarXivに「電子健康記録のためのスケーラブルで正確なディープラーニング」...

LIMEを使用してさまざまな機械学習モデルのコード例を説明する

機械学習モデルはますます洗練され、正確になってきていますが、その不透明性は依然として大きな課題となっ...

ChatGPTはユーザーがペイウォールを回避できないようにBing検索へのアクセスを停止

7月5日のニュース、6月28日、OpenAIのチャットボットChatGPTは、MicrosoftのB...

教師なし機械学習の基本ガイド

[51CTO.com クイック翻訳] 教師なし機械学習と人工知能は、組織のビジネス成長に役立つことは...

顔認識がまた失敗しました。アクセス制御システムは引き続き使用できますか?

旅行がますます便利になるにつれ、旅行の際には携帯電話だけを持って行けばよくなります。これは、モバイル...