LEACHプロトコルのアルゴリズムと特徴

LEACHプロトコルのアルゴリズムと特徴

LEACH プロトコルについてはあまり知られていないかもしれません。このプロトコルの説明は、低電力適応型クラスタリング階層プロトコルです。名前から、このプロトコルの一般的な機能を想像することができます。さて、まずはそのアルゴリズムを勉強しましょう。

アルゴリズムの基本的な考え方は、クラスター ヘッド ノードを周期的にランダムに選択し、ネットワーク全体のエネルギー負荷を各センサー ノードに均等に分散することで、ネットワークのエネルギー消費を削減し、ネットワーク全体の生存時間を延ばすことです。シミュレーション結果によると、LEACH プロトコルは、一般的なフラット マルチホップ ルーティング プロトコルや静的階層型アルゴリズムと比較して、ネットワーク ライフサイクルを 15% 延長できます。

動作中、LEACH はクラスター再構築プロセスを継続的にループします。各クラスター再構築プロセスは、ラウンドの概念で説明できます。各ラウンドは、クラスター確立フェーズとデータ転送の安定フェーズの 2 つのフェーズに分けられます。リソースのオーバーヘッドを節約するために、安定化フェーズの期間は確立フェーズよりも長くなります。クラスターの確立プロセスは、クラスター ヘッド ノードの選択、クラスター ヘッド ノードのブロードキャスト、クラスター ヘッド ノードの確立、およびスケジューリング メカニズムの生成という 4 つの段階に分けられます。

クラスター リーダー ノードの選択は、ネットワークで必要なクラスター リーダーの合計数と、各ノードがこれまでにクラスター リーダーになった回数に基づいて行われます。具体的な選択方法は、各センサーノードが 0 ~ 1 の間の値をランダムに選択することです。選択した値が特定のしきい値未満の場合、このノードはクラスター リーダー ノードになります。

クラスターリーダーノードが選択されると、ブロードキャストを通じてネットワーク全体に通知されます。ネットワーク内の他のノードは、受信した情報の信号強度に基づいてどのクラスターに属するかを決定し、対応するクラスター ヘッド ノードに通知してクラスターの確立を完了します。最後に、クラスター ヘッド ノードは TDMA を使用して、クラスター内の各ノードにデータを送信するための時間ポイントを割り当てます。

安定フェーズでは、センサー ノードは収集したデータをクラスター ヘッド ノードに送信します。クラスター ヘッド ノードは、クラスター内のすべてのノードによって収集されたデータを統合し、集約ノードに送信します。これは、通信トラフィックを削減する合理的な動作モデルです。一定期間安定フェーズが続いた後、ネットワークはクラスター確立フェーズに戻り、次のクラスター再構築ラウンドを実行します。このサイクルが継続され、各クラスターは通信に異なる CDMA コードを使用して、他のクラスターのノードからの干渉を減らします。

LEACH プロトコルは、主にクラスタ確立フェーズ (セットアップ フェーズ) と安定動作フェーズ (準備フェーズ) の 2 つのフェーズに分かれています。クラスター確立フェーズと安定動作フェーズの合計期間は 1 ラウンドです。プロトコルのオーバーヘッドを削減するために、安定動作フェーズの期間はクラスタ確立フェーズよりも長くなります。

クラスター確立フェーズでは、センサーノードは 0 から 1 の間の乱数をランダムに生成し、それをしきい値 T(n) と比較します。しきい値より小さい場合、ノードはクラスターヘッドとして選出されます。安定フェーズでは、センサー ノードは収集したデータをクラスター ヘッド ノードに送信します。クラスター ヘッド ノードは収集されたデータを統合し、その情報を集約センターに送信します。集約センターはデータを監視センターに送信してデータを処理します。安定フェーズが一定期間続いた後、ネットワークはクラスター確立フェーズに戻り、次のラウンドのクラスター再構築を実行し、これが連続サイクルで継続されます。

LEACH プロトコルの特徴は次のとおりです。

1 シンク ノードに送信される情報の量を削減するために、クラスター ヘッド ノードは、クラスター内の異なるソース ノードによって生成されたデータを融合し、融合したデータをシンク ポイントに送信する役割を担います。

2 LEACHはTDMA/CDMAベースのMAC層メカニズムを使用して、クラスタ内およびクラスタ間の競合を軽減します。

3 データ収集は集中化され定期的に行われるため、このプロトコルは継続的な監視を必要とするアプリケーションシステムに非常に適しています。

4 エンドユーザーにとっては、すべてのデータをすぐに取得する必要がないため、プロトコルは定期的にデータを送信する必要がなく、センサーノードのエネルギー消費を制限するという目的を達成できます。

5 一定の時間間隔が経過すると、プロトコルはクラスタヘッドノードを再選出し、無線センサーネットワークが合意されたエネルギー配分を確実に得られるようにする。

LEACH はネットワークの寿命を延ばすことができますが、プロトコルで使用される仮定に関して議論する価値のある問題がまだいくつかあります。これらの問題は主に次の点に反映されています。

1 LEACH では、すべてのノードがシンク ノードと直接通信でき、各ノードが異なる MAC プロトコルをサポートする計算能力を持っていることを前提としているため、このプロトコルは大規模な無線センサー ネットワークへの適用には適していません。

2 プロトコルでは、クラスタヘッドノードの数をネットワーク全体にどのように分散するかは指定されません。したがって、選択されたクラスターリーダーノードはネットワークの特定の領域に集中している可能性が高く、その結果、一部のノードの周囲にクラスターリーダーノードがなくなることになります。

3 LEACH では、初期のクラスターリーダー選択ラウンドではすべてのノードが同じエネルギーを持ち、クラスターリーダーになる各ノードはほぼ同じエネルギーを消費すると想定しています。したがって、このプロトコルは、ノードエネルギーが不均一なネットワークには適していません。

ノードがクラスタ ヘッド選出によってクラスタ ヘッドになると、他のノードに通知する通知メッセージを公開します。他のノードは、クラスター ヘッド ノードからの距離に基づいて、参加するクラスターを選択します。

<<:  Linux SNMP アルゴリズムと機能モジュール

>>:  Bzip2アルゴリズムハードウェアアクセラレーション方式

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

ドイツ企業の47%は、人工知能の最大の利点は生産効率の向上であると考えている。

ドイツ連邦政府は2018年に「ドイツ人工知能開発戦略」を発表し、人工知能分野におけるドイツの研究開発...

プログラマーは「自殺」している。人工知能が進化し続ける中、人間は何をすべきか?

中国、日本、韓国の囲碁名人数十人がこのゲームに挑み、アルファ碁は1敗もせずに60連勝した。その後、世...

AIダイナミックセキュリティガードデータセンター

最近の世界的な調査によると、企業の事業がハッキングされると莫大な損失が発生し、サイバー攻撃1回あたり...

NetEase MediaのLiu Yandong氏:AIは読者にパーソナライズされたコンテンツをタイムリーに提供します

【51CTO.comオリジナル記事】 2017年12月1日から2日まで、51CTO主催のWOTDグロ...

合成データ生成器はAIのバイアス問題を解決できるかもしれない

AI の偏見は、個人にさまざまな影響を及ぼす可能性がある深刻な問題です。人工知能が進歩するにつれて、...

Nvidia は Arm を買収して何をしたいのでしょうか?中国の承認後、クアルコムの影が再び現れる

またタトゥー?興味深いのは、この取引の解約手数料の詳細がまだ発表されていないことです。現時点では、独...

...

機械学習は創造的な仕事に役立つ

【51CTO.com クイック翻訳】 [[397384]] [序文]直感に反するように聞こえるかもし...

マルチモーダル生体認証の利点を分析した記事、急いでコード化しましょう!

今日の情報化時代において、個人の身元を正確に識別し、情報セキュリティを保護する方法は、あらゆる分野の...

COVID-19は非接触アクセス制御の新時代を加速させる

現在、新型コロナウイルス感染症のパンデミックが世界的に拡大し、私たちの知る世界は大きく変化しています...

IoTとAIの組み合わせがもたらす大きなチャンス

食器洗い機がどれくらいの時間稼働するか知っていますか? 多くの人はおそらく退屈だと言うでしょう。この...

米国商務省は、生成型人工知能の潜在的なリスクに対処するために、公開AIワーキンググループを設立した。

6月25日、ジーナ・ライモンド米国商務長官は、国立標準技術研究所(NIST)が人工知能(AI)に関...

人工知能:この冷たい水はちょうどいいタイミングで注がれます!

最近、AI(人工知能)同時通訳詐欺事件をめぐる議論がテクノロジーや翻訳界で話題となり、「AIは人間を...

データ サイエンティストまたは AI エンジニアになるために独学するにはどうすればよいでしょうか?これらの9つのポイントを克服する必要があります

誰もが教室でデータサイエンス、人工知能、機械学習を学ぶ時間があるわけではありませんし、誰もがこれらの...

...